Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (1): 84-91    DOI: 10.3785/j.issn.1008-973X.2022.01.009
    
Experimental study on interface shear fracture of UHTCC and steel
Qing-hua LI(),Ning BAO,Guo-zhong WANG
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1166KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The mechanical properties of bimaterial interface were analyzed in order to apply ultra-high toughness cement-based composites (UHTCC) to long-span steel box girder bridges. The propagation process of shear crack at the interface between UHTCC and steel was analyzed by using non-notched unilateral symmetrical loading composite specimens. The feasibility of the method for quantitative determination of interfacial shear fracture toughness of bimaterials was verified by digital image correlation (DIC) method. The effects of different interfacial treatment methods on the interfacial shear fracture toughness of composite specimens were analyzed. The test results show that the quantitative test of pure shear fracture toughness of interface can be realized by using UHTCC- steel without notch unilateral symmetrical loading composite specimen combined with DIC technology. Different interface treatment methods have little effect on the shear fracture toughness of the interface between UHTCC and steel. The interface between UHTCC and steel has high shear fracture toughness and good shear resistance.



Key wordsultra-high toughness cementitious composites      digital image correlation method      interface      shear fracture toughness     
Received: 12 March 2021      Published: 05 January 2022
CLC:  TU 502  
Fund:  国家自然科学基金资助项目(5197080976)
Cite this article:

Qing-hua LI,Ning BAO,Guo-zhong WANG. Experimental study on interface shear fracture of UHTCC and steel. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 84-91.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.01.009     OR     https://www.zjujournals.com/eng/Y2022/V56/I1/84


UHTCC与钢材界面的剪切型断裂试验研究

为了将超高韧性水泥基复合材料(UHTCC)应用于大跨径钢箱梁桥,研究双材料界面的力学性能. 采用无切口单边对称加载复合试件,研究UHTCC与钢材界面剪切型裂缝扩展过程. 利用数字图像相关法(DIC),验证该方法用于定量测定双材料界面剪切型断裂韧度的可行性,探究不同界面处理方式对复合试件界面剪切型断裂韧度的影响. 试验结果表明,采用UHTCC-钢材无切口单边对称加载复合试件,结合DIC技术可以实现界面纯剪切型断裂韧度的定量测试;不同界面处理方式对UHTCC与钢材界面剪切型断裂韧度的影响均较小;UHTCC与钢材界面具有较高的剪切断裂韧度,抗剪切性能良好.


关键词: 超高韧性水泥基复合材料,  数字图像相关法,  界面,  剪切型断裂韧度 
Fig.1 Unnotched UHTCC-steel composite specimen bearing single side symmetrical load
Fig.2 Definition of K-space angle of fracture mixing degree
钢材种类 fy/MPa fu /MPa Es /GPa μs
Q345qD 345 504 206 0.3
Tab.1 Mechanical properties of Q345qD
纤维种类 lf/mm df/μm ff /MPa lfe /% Ef /GPa ρf /(g·cm-3)
K-II REC15 12 39 1620 7 42.8 1.3
Tab.2 Properties of PVA fiber
材料 Esu /GPa μU fcu /MPa ftc /MPa
UHTCC 17.7 0.19 50.8 4.85
Tab.3 Mechanical properties of UHTCC
组别 界面处理方式 试件个数
A 不处理 9
B 丙烯酸黏结剂 9
C 丙烯酸黏结剂+石英砂 9
Tab.4 Grouping of specimens
Fig.3 Illustrations of test setups and measurement scheme for UHTCC-steel composite specimens
Fig.4 Load-displacement curves of part of specimens
Fig.5 Illustration of variations of major strain contours of specimen B2
Fig.6 Failure characteristics of UHTCC-steel interface
Fig.7 Computational domains on specimen
Fig.8 Slip displacement curves of representative specimens for each group
Fig.9 Load-time curves of representative specimens for each group
试件 Pc/kN σc /MPa KIIc/ (MPa·m1/2 |ψ|/(°)
A1 489.51 48.95 6.89 83.16
A2 457.93 45.79 6.44 86.22
A3 376.91 37.69 5.30 85.95
A4 471.98 47.20 6.64 82.19
A6 458.32 45.83 6.45 82.86
A7 418.81 41.88 5.89 83.68
A9 350.57 35.06 4.93 85.80
B1 558.38 55.84 7.86 84.17
B2 460.62 46.06 6.48 84.57
B4 367.78 36.78 5.18 83.89
B5 374.74 37.47 5.27 83.08
B6 444.13 44.41 6.25 81.76
B7 335.10 33.51 4.72 84.71
B8 351.28 35.13 4.94 85.01
C1 385.09 38.51 5.42 83.13
C2 525.86 52.59 7.40 84.08
C4 392.78 39.28 5.53 82.16
C5 489.59 48.96 6.89 81.91
C8 319.30 31.93 4.49 83.61
C9 358.42 35.84 5.04 85.75
Tab.5 Specimen IDs and critical parameters
Fig.10 Mode II fracture toughness of each group of specimens
[1]   李智, 钱振东 典型钢桥面铺装结构的病害分类分析[J]. 交通运输工程与信息学报, 2006, 4 (2): 110- 115
LI Zhi, QIAN Zhen-dong Disease analysis and classification of the representative pavements on steel deck[J]. Journal of Transportation Engineering and Information, 2006, 4 (2): 110- 115
doi: 10.3969/j.issn.1672-4747.2006.02.021
[2]   徐世烺, 李贺东 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41 (6): 45- 60
XU Shi-liang, LI He-dong A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41 (6): 45- 60
doi: 10.3321/j.issn:1000-131X.2008.06.008
[3]   WANG S, WU C, LI V C Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98 (6): 483- 492
[4]   徐世烺, 李庆华. 超高韧性水泥基复合材料在高性能建筑结构中的基本应用[M]. 北京: 科学出版社, 2010 .
[5]   LI Qing-hua, HUANG Bo-tao, XU Shi-lang, et al Compressive fatigue damage and failure mechanism of fiber reinforced cementitious material with high ductility[J]. Cement and Concrete Research, 2016, 90: 174- 183
doi: 10.1016/j.cemconres.2016.09.019
[6]   HUANG Bo-tao, LI Qing-hua, XU Shi-lang, et al Fatigue deformation behavior and fiber failure mechanism of ultra-high toughness cementitious composites in compression[J]. Materials and Design, 2018, 157 (11): 457- 468
[7]   李庆华, 黄博滔, 周宝民, 等 超高韧性水泥基复合材料单轴压缩疲劳性能研究[J]. 建筑结构学报, 2016, 37 (1): 135- 142
LI Qing-hua, HUANG Bo-tao, ZHOU Bao-min, et al Study on compression fatigue properties of ultra high toughness cementitious composites[J]. Journal of Building Structures, 2016, 37 (1): 135- 142
[8]   余江滔, 许万里, 张远淼 ECC-混凝土黏结界面断裂试验研究[J]. 建筑材料学报, 2015, 18 (6): 958- 963
YU Jiang-tao, XU Wan-li, ZHANG Yuan-miao Experiment study on fracture property of ECC-concrete interface[J]. Journal of Building Materials, 2015, 18 (6): 958- 963
doi: 10.3969/j.issn.1007-9629.2015.06.008
[9]   崔涛, 何浩祥, 闫维明 ECC与既有混凝土结合面的抗剪性能[J]. 建筑材料学报, 2020, 23 (5): 42- 49
CUI Tao, HE Hao-xiang, YAN Wei-ming Shear resistance property of ECC-existing concrete interface[J]. Journal of Building Materials, 2020, 23 (5): 42- 49
[10]   丁祖德, 文锦诚, 李晓琴 PVA-ECC与既有混凝土黏结面抗渗及劈裂抗拉试验[J]. 建筑材料学报, 2019, (3): 356- 362
DING Zu-de, WEN Jin-cheng, LI Xiao-qin Impermeability and splitting tensile tests of PVA-ECC and existing concrete bonding interface[J]. Journal of Building Materials, 2019, (3): 356- 362
doi: 10.3969/j.issn.1007-9629.2019.03.005
[11]   FAN J, GOU S, DING R, et al Experimental and analytical research on the flexural behaviour of steel-ECC composite beams under negative bending moments[J]. Engineering Structures, 2020, 210: 110309.1- 110309.17
[12]   ZHANG Shi-hong, SHAO Xu-dong, CAO Jun-hui, et al Fatigue performance of a lightweight composite bridge deck with open ribs[J]. Journal of Bridge Engineering, 2016, 21 (7): 04016039
doi: 10.1061/(ASCE)BE.1943-5592.0000905
[13]   徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社, 2011 .
[14]   杨卫. 宏微观断裂力学[M]. 北京: 国防工业出版社, 1995.
[15]   REINHARDT H W, XU S Experimental determination of KIIC of normal strength concrete[J]. Materials and Structures, 1998, 31 (5): 296- 302
doi: 10.1007/BF02480670
[16]   REINHARDT H W, XU S A practical testing approach to determine mode II fracture energy GIIF for concrete[J]. International Journal of Fracture, 2000, 105 (2): 107- 125
doi: 10.1023/A:1007649004465
[17]   高洪波 . 混凝土Ⅰ型、Ⅱ型断裂参数确定的研究[D]. 大连: 大连理工大学, 2008 .
[18]   KEER L M, GUO Q Stress analysis for symmetrically loaded bonded layers[J]. International Journal of Fracture, 1990, 43: 69- 81
doi: 10.1007/BF00018127
[19]   HUANG Bo-tao, YIN Xing , LI Qing-hua, et al. Testing method for interface mode II fracture of plain concrete and fiber-reinforced cementitious composite [C]// 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Bayonne: Aedification Publishers, 2019.
[20]   SUO Z, HUTCHINSON J W Sandwich test specimens for measuring interface crack toughness[J]. Materials Science and Engineering A, 1989, 107: 135- 143
doi: 10.1016/0921-5093(89)90382-1
[21]   HUTCHINSON J W, SUO Z Mixed mode cracking in layered materials[J]. Advances in Applied Mechanics, 1991, 29 (8): 63- 191
[22]   RICE J R Elastic fracture concepts for interfacial cracks[J]. Journal of Applied Mechanics, 1988, 55 (1): 98- 103
doi: 10.1115/1.3173668
[23]   贾单锋, 廖小伟, 崔佳 Q345qD桥梁钢高周疲劳性能及γ-P-S-N曲线试验研究[J]. 天津大学学报:自然科学与工程技术版, 2016, 49 (Supple.1): 122- 128
JIA Dan-feng, LIAO Xiao-wei, CUI Jia Experimental study on high cycle fatigue behavior and γ-P-S-N curves of bridge steel Q345qD[J]. Journal of Tianjin University: Science and Technology, 2016, 49 (Supple.1): 122- 128
[24]   高延性纤维增强水泥基复合材料力学性能试验方法: JCT2461-2018 [S]. 北京: 中国计划出版社, 2018.
[25]   LI Dong-yang, HUANG Pei-yan, CHEN Zhan-biao, et al Experimental study on fracture and fatigue crack propagation processes in concrete based on DIC technology[J]. Engineering Fracture Mechanics, 2020, (235): 107166
[1] Xue-ying BAO,Ya-juan LI,Suo-ting HU,Xin-lin BAN,Lin WANG,Jian-chao XU. Tradeoff optimization of key elements of technical interface of railway bridge-tunnel engineering[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 558-568.
[2] Jin-zhen LIU,Fang-fang YE,Hui XIONG. Recognition of multi-class motor imagery EEG signals based on convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2054-2066.
[3] Jing ZHANG,Dao-qin ZOU,Hai-long WANG,Xiao-yan SUN. Bond tensile performance and constitutive models of interfaces between vertical and horizontal filaments of 3D printed concrete[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2178-2185.
[4] Jin XIA,Run-li GAN,Yan FANG,Yu-xi ZHAO,Wei-liang JIN. Experimental study on direct shear performance of concrete-concrete interface of prefabricated structure sleeve grouting connection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 491-498.
[5] Ai-min ZHOU,Cai-xia ZHOU,Jin-yan OUYANG,Shu-tao ZHANG. Model of synthetic evaluation on interface stylistic beauty based on moderately standardized of index[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2273-2285.
[6] LIU Jun-wei, ZHU Na, WANG Li-zhong, SHANG Wen-chang. Degenerate mechanism of sand-steel interface under cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1123-1130.
[7] GAO Guan, ZHU Rui, HE Zhi-guo, YU Ching-hao. Numerical simulation of free surface flow over solid obstacles based on high-order accurate scheme[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1201-1208.
[8] TONG Ji-jun, LI Lin, LIN Qin-guang, ZHU Dan-hua. SSVEP brain-computer interface (BCI) system using smoothed pseudo Wigner-Ville distribution[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 598-604.
[9] ZHAO Liang, LV Ya-fei, HE Zhi-guo, LIN Ying-dian, HU Peng, LIN Ting. Influence of stratified water and obstacles on downslope gravity currents' movement characteristics[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2466-2473.
[10] ZHOU Er zhen, YING Ji. Thermal and electrical conductivity of carbon nanotube arrays/epoxy[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1671-1676.
[11] LIU Hui, FENG Zhi quan, LIANG Li wei, XU Zhi peng. Natural interaction model and algorithm based on virtual interface[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1167-1175.
[12] LIU Li, YANG Yin tang. Effection of morphology of SiC/SiO2 interface on mobility characteristics of MOS devices[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 392-396.
[13] TIAN Hong liang,YU Yuan,ZHANG Yi. Normal rough contact modeling of machine tool support ground foot joint interface[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2111-2118.
[14] YANG Bang-hua, HAN Zhi-jun, WANG Qian, HE liang-fei. Hybrid methodology combining fractal dimension and RLS-ICA for rejection of electroencephalography noise[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1234-1240.
[15] WANG Zhong-jin, XIE Xin-yu, FANG Peng-fei,LI Jin-zhu, JIN Wei-liang. Analysis for calculation of nonlinear settlement of rigid long-short compound piles[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 463-470.