Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (11): 2178-2185    DOI: 10.3785/j.issn.1008-973X.2021.11.019
    
Bond tensile performance and constitutive models of interfaces between vertical and horizontal filaments of 3D printed concrete
Jing ZHANG(),Dao-qin ZOU,Hai-long WANG*(),Xiao-yan SUN
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1834KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Directly tensile tests were conducted, in order to investigate the tensile properties of the interfaces between vertical and horizontal filaments of 3D printed concrete and the tension-deformation curves. The distribution of porosity in the matrix and the interfaces were obtained and the thicknesses as well as average porosity of the interfaces were determined, using XCT scanning technique. The tensile-deformation curves of the interfaces were obtained, according to the deformation relationship between the interfaces and the matrix. The tensile constitutive models of interfaces were established based on the existing damage constitutive theory. Results showed that the average tensile strengths between vertical and horizontal filaments were 1.636 MPa and 1.514 MPa, accounting for 85.8% and 79.4% of the matrix strength, respectively. An elastic model can be used to describe the relationships of strength, ultimate deformation and porosity of interfaces. The thickness of the interface between vertical filaments was about 0.81 mm, while the thickness of the interface between horizontal filaments was about 2.12 mm. The calculated results based on the established constitutive model agreed well with the test results, which can accurately reflect the mechanical response of 3D printed concrete under tensile stress and provide some scientific support to the numerical simulation of 3D printed concrete.



Key words3D printed concrete      interface tensile performance      tension-deformation curve      interface thickness      tensile constitutive model     
Received: 21 December 2020      Published: 05 November 2021
CLC:  TU 528  
Fund:  国家自然科学基金资助项目(52079123);浙江省重点研发计划资助项目(2021C01022)
Corresponding Authors: Hai-long WANG     E-mail: 1092384700@qq.com;hlwang@zju.edu.cn
Cite this article:

Jing ZHANG,Dao-qin ZOU,Hai-long WANG,Xiao-yan SUN. Bond tensile performance and constitutive models of interfaces between vertical and horizontal filaments of 3D printed concrete. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2178-2185.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.11.019     OR     https://www.zjujournals.com/eng/Y2021/V55/I11/2178


3D打印混凝土层条间界面抗拉性能与本构模型

通过直接拉伸试验,研究3D打印混凝土层、条间界面的抗拉强度与整体拉伸-变形曲线. 通过XCT扫描,根据孔隙率在基体与界面处的分布规律,确定层、条间界面的厚度和平均孔隙率. 根据打印混凝土基体与层、条界面的变形关系得到界面的拉伸-变形曲线. 基于混凝土的拉伸塑性损伤本构理论,建立3D打印混凝土层、条间界面的拉伸本构模型. 研究结果显示:打印混凝土层、条间的平均抗拉强度为1.636、1.514 MPa,分别占基体抗拉强度的85.8%、79.4%;层、条间界面抗拉强度和极限变形与界面处孔隙率存在明显的线性关系;层间界面厚度约为0.81 mm,条间界面厚度约为2.12 mm;所建立的本构模型与试验结果较吻合,能够准确反映拉伸荷载作用下界面的力学响应,可以为3D打印混凝土数值模拟提供可靠依据.


关键词: 3D打印混凝土,  界面拉伸性能,  应力-应变曲线,  界面厚度,  拉伸本构模型 
组分 wB 组分 wB
CaO 40.68 MgO 1.45
SiO2 9.53 SO3 12.42
Al2O3 32.75 Na2O 0.08
Fe2O3 1.33 Loss 0.11
Tab.1 Chemical compositions of cement %
l/mm D/μm ft/MPa δ/% E/GPa ρ/(g·cm?3)
12 31 1600 7 43 1.3
Tab.2 Physical and mechanical properties of PVA fiber
Fig.1 Size and interface between layers of tensile specimen
Fig.2 Tensile test apparatus
Fig.3 Tensile specimen for interfacial tensile test
Fig.4 Schematic diagram of CT scan specimen
Fig.5 Failure modes of specimens in tensile test
Fig.6 Tensile strength of matrix and interfaces
Fig.7 Damaged section of interfaces in tensile test
Fig.8 3D reconstruction model of printed specimen by CT scan
Fig.9 Study area of porosity in matrix part (left view)
Fig.10 Normal fitting results of porosity distribution of matrix parts
Fig.11 Study area of porosity
Fig.12 Porosity distribution of interface between strips
Fig.13 Porosity distribution of interface between layers
Fig.14 Fitting curve of linear relationship between porosity and ultimate tensile strength
Fig.15 Fitting curve of linear relationship between porosity and ultimate tensile strain
Fig.16 Tensile stress-strain curve of interface material
Fig.17 Tensile stress-strain curves of interfaces and matrix
Fig.18 Tensile stress-strain curves of matrix material
Fig.19 Comparison of calculated values and test values of tensile stress-strain curves at interface
[1]   LEE J Y, AN J, CHUA C K Fundamentals and applications of 3D printing for novel materials[J]. Applied Materials Today, 2017, 7: 120- 133
doi: 10.1016/j.apmt.2017.02.004
[2]   HAMIDI F, ASLANI F Additive manufacturing of cementitious composites: materials, methods, potentials, and challenges[J]. Construction and Building Materials, 2019, 218: 582- 609
doi: 10.1016/j.conbuildmat.2019.05.140
[3]   PAOLINI A, KOLLMANNSBERGER S, RANK E Additive manufacturing in construction: a review on processes, applications, and digital planning methods[J]. Additive Manufacturing, 2019, 30: 100894
doi: 10.1016/j.addma.2019.100894
[4]   ZHANG J, WANG J, DONG S, et al A review of the current progress and application of 3D printed concrete[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125: 105533
doi: 10.1016/j.compositesa.2019.105533
[5]   SIDDIKA A, MAMUM M A, FERDOUS W, et al 3D-printed concrete: applications, performance, and challenges[J]. Journal of Sustainable Cement-Based Materials, 2019, 9 (3): 127- 164
[6]   LU B, WENG Y, LI M, et al A systematical review of 3D printable cementitious materials[J]. Construction and Building Materials, 2019, 207: 477- 490
doi: 10.1016/j.conbuildmat.2019.02.144
[7]   NGO T D, KASHANI A, IMBALZANOL G, et al Additive manufacturing (3D printing): a review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172- 196
doi: 10.1016/j.compositesb.2018.02.012
[8]   RASHID A A, KHAN S A, AL-GHAMDI S G, et al Additive manufacturing: technology, applications, markets, and opportunities for the built environment[J]. Automation in Construction, 2020, 118: 103268
doi: 10.1016/j.autcon.2020.103268
[9]   CRAVEIRO F, DUARTE J P, BARTOLO H, et al Additive manufacturing as an enabling technology for digital construction: a perspective on Construction 4.0[J]. Automation in Construction, 2019, 103: 251- 267
doi: 10.1016/j.autcon.2019.03.011
[10]   KHAN M S, SANCHEZ F, ZHOU H 3-D printing of concrete: beyond horizons[J]. Cement and Concrete Research, 2020, 133: 106070
doi: 10.1016/j.cemconres.2020.106070
[11]   MECHTCHERINE V, BOS F P, PERROT A, et al Extrusion-based additive manufacturing with cement-based materials: production steps, processes, and their underlying physics: a review[J]. Cement and Concrete Research, 2020, 132: 106037
doi: 10.1016/j.cemconres.2020.106037
[12]   ROUSSEL N, SPANGENBERG J, WALLEVIK J, et al Numerical simulations of concrete processing: from standard formative casting to additive manufacturing[J]. Cement and Concrete Research, 2020, 135: 106075
doi: 10.1016/j.cemconres.2020.106075
[13]   MARCHMENT T, SANJAYAN J G, NEMATOLLAHI B, et al. Interlayer strength of 3D printed concrete: influencing factors and method of enhancing[M]. 3D Concrete Printing Technology, 2019: 241-264.
[14]   BONG S H, NEMATOLLAHI B, NAZARI A, et al Method of optimisation for ambient temperature cured sustainable geopolymers for 3D printing construction applications[J]. Materials (Basel), 2019, 12 (6): 902
doi: 10.3390/ma12060902
[15]   NEMATOLLAHI B, XIA M, VIJAY P, et al. Properties of extrusion-based 3D printable geopolymers for digital construction applications[M]. 3D Concrete Printing Technology. Oxford: Butterworth-Heinemann Elsevier Ltd., 2019: 371-388.
[16]   MARCHMENT T, SANJAYAN J, XIA M Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification[J]. Materials and Design, 2019, 169: 107684
doi: 10.1016/j.matdes.2019.107684
[17]   PANDA B, PAUL S C, MOHAMED N A N, et al Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113: 108- 116
doi: 10.1016/j.measurement.2017.08.051
[18]   TAY Y W D, TING G H A, QIAN Y, et al Time gap effect on bond strength of 3D-printed concrete[J]. Virtual and Physical Prototyping, 2018, 14 (1): 104- 113
[19]   刘致远, 王振地, 王玲, 等 3D打印水泥净浆层间拉伸强度及层间剪切强度[J]. 硅酸盐学报, 2019, 47 (5): 648- 652
LIU Zhi-yuan, WANG Zhen-di, WANG Ling, et al Interlayer bond strength of 3D printing cement paste by cross-bonded method[J]. Journal of the Chinese Ceramic Society, 2019, 47 (5): 648- 652
[20]   余红芸. 钢纤维—水泥基界面过渡区纳米力学性能研究[D]. 武汉: 武汉大学, 2017.
YU Hong-yun. Nano-indentation character of interfacial transition zone between steel fiber and cement paste[D]. Wuhan: Wuhan University, 2017.
[21]   张鸿儒. 基于界面参数的再生骨料混凝土性能劣化机理及工程应用[D]. 杭州: 浙江大学, 2016.
ZHANG Hong-ru. Deterioration mechanical of recycled aggregate concrete (RAC) based on interface parameters and the application of RAC [D]. Hangzhou: Zhejiang University, 2016.
[22]   董艳颖. 水泥基复合材料界面区的力学性能试验研究[D]. 内蒙古: 内蒙古工业大学, 2016.
DONG Yan-ying. Experimental study on the mechanical properties of the interfacial zone of cement based composites [D]. Inner Mongolia: Inner Mongolia University of Technology, 2016.
[23]   CHEN X, WU S, ZHOU J Influence of porosity on compressive and tensile strength of cement mortar[J]. Construction and Building Materials, 2013, 40: 869- 874
doi: 10.1016/j.conbuildmat.2012.11.072
[24]   KUMAR R, BHATTACHARJEE B Porosity, pore size distribution and in situ strength of concrete[J]. Cement and Concrete Research, 2003, 33 (1): 155- 164
doi: 10.1016/S0008-8846(02)00942-0
[25]   LIAN C, ZHUGE Y, BEECHAM S The relationship between porosity and strength for porous concrete[J]. Construction and Building Materials, 2011, 25 (11): 4294- 4298
doi: 10.1016/j.conbuildmat.2011.05.005
[26]   邓朝莉, 李宗利 孔隙率对混凝土力学性能影响的试验研究[J]. 混凝土, 2016, (7): 41- 44
DENG Chao-li, LI Zong-li Experimental study on mechanical properties of concrete with porosity[J]. Concrete, 2016, (7): 41- 44
doi: 10.3969/j.issn.1002-3550.2016.07.011
[27]   杜修力, 金浏 考虑孔隙及微裂纹影响的混凝土宏观力学特性研究[J]. 工程力学, 2012, 29 (8): 101- 107
DU Xiu-li, JIN Liu Research on the influence of pores and micro-cracks on the macro-mechanical properties of concrete[J]. Engineering Mechanics, 2012, 29 (8): 101- 107
doi: 10.6052/j.issn.1000-4750.2010.10.0742
[28]   白晓玮. 混凝土损伤本构关系的研究与应用[D]. 郑州: 郑州大学, 2017.
BAI Xiao-wei. Study and application on the damage constitutive law for concrete[D]. Zhengzhou: Zhengzhou University, 2017.
[1] Ke-lai YU,Zhen-jun YANG,Xin ZHANG,Guo-hua LIU,Hui LI. Hydraulic fracturing modeling of quasi-brittle materials based on pore pressure cohesive interface elements[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2151-2160.
[2] Lei XIE,Qing-hua LI,Shi-lang XU. Dynamic compressive properties and constitutive model of reactive powder concrete[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 999-1009.
[3] Xiao-hu WANG,Ni-du JIKE,Shan CHEN,Yu-xuan QI,Yu PENG,Qiang ZENG. Water imbibition in concrete in-situ traced by transmission X-ray radiography[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 727-732.
[4] Yong YAO,Zhen-jun YANG,Qi ZHANG. Experiment research on improving interface performance of steel fiber and mortal by silane coatings[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 1-9.
[5] Pei GE,Wei HUANG,Meng LI. Experimental study on recycled brick aggregate concrete frame model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 10-19.
[6] Yong-gui WANG,Shuai-peng LI,Peter HUGHES,Yu-hui FAN,Xiang-yu GAO. Elevated temperatures performance of modified recycled aggregate concrete[J]. Journal of ZheJiang University (Engineering Science), 0, (): 2047-2057.
[7] Qing-hua LI,Cheng-lan-qing SHU. Experimental study on stress wave propagation in ultra high toughness cementitious composites[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 851-857.
[8] Xiao-tian LI,Chu-xin WANG,Yong-qiang YU. Rheological distribution algorithm of cement paste based on particle-flow-interaction theory[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2264-2270.
[9] Jin XIA,Shi-jie JIN,Xiao-yu HE,Xiao-mei XU,Wei-liang JIN. Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2298-2308.
[10] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO. Life prediction of coated steel with individual difference in magnesium oxychloride cement concrete[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2309-2316.
[11] OU Zu-min, SUN Lu. Flexural fatigue-life reliability of frost-damaged concrete[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1074-1081.
[12] LI Jing, WANG Zhe. Deformation properties of concrete under quasi plane stress sate[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 745-751.
[13] WEN Xiao-dong, CAI Yu-liang, ZHAO Li, FENG Lei. Sulfate resistance of concrete by machine-made tuff sand at low temperature[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 532-537.
[14] XIONG Hai Bei, CAO Ji Xing, ZHANG Feng Liang. Displacement monitoring method for frame tube structure with strengthened stories[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1752-1760.
[15] WU Meng, JI Yong sheng, CHEN Xiao feng, ZHANG Ling lei. Effects of superfine fly ash on thaumasite form of sulfate attack[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1479-1485.