|
|
Safety evaluation of a steel truss using mechanical Bayesian networks |
Jia-li TAN1( ),Sheng-en FANG1,2,*( ) |
1. School of Civil Engineering, Fuzhou University, Fuzhou 350108, China 2. National and Local Joint Engineering Research Center for Seismic and Disaster Informatization of Civil Engineering, Fuzhou University, Fuzhou 350108, China |
|
|
Abstract A mechanical Bayesian network was used to express the logical relationship among truss members for safety evaluation of a truss structure. The network topology was established based on mechanical analysis, and the nodal variables included the maximum stress of all the members, the state of the discrete lower longitudinal girder, and the system state. The logical strength between two relevant member nodes was described by conditional probability. A mechanical Bayesian network was established based on numerical analysis and sampling. The four maximum member stresses of the steel truss structure model were input into the established Bayesian network as the known evidence. The maximum stresses of the other members, as well as the state probability of the system, were then deduced. Results show that the mechanical Bayesian network can be used to well estimate the maximum stress of the other nodes (truss members) when the maximum stresses of the monitoring members are known. The coefficient of determination, i,e., R2 = 0.9992, shows that the consistency between the evaluated stress of all elements and the observed data is strong. Simultaneously, the members closer to the known members are estimated in a more accurate way, which can be used as a reference for choosing monitoring members. Furthermore, the inferred state probability of truss system is consistent with the observed data. Thus, the failure probability can be used as an index for safety evaluation of truss structures.
|
Received: 01 December 2020
Published: 05 November 2021
|
|
Fund: 国家自然科学基金资助项目(52178276);福州大学“旗山学者”奖励支持计划资助项目(XRC-1688) |
Corresponding Authors:
Sheng-en FANG
E-mail: M170510010@fzu.edu.cn;shengen.fang@fzu.edu.cn
|
基于力学贝叶斯网络的钢桁架安全评估
为了评估桁架结构的安全性能,采用力学贝叶斯网络表示桁架各单元间的逻辑关系. 提出根据力学分析建立网络拓扑,网络节点变量包括连续型的桁架结构各单元最大应力、离散型的下平纵梁状态及体系状态;通过条件概率描述节点间的逻辑关系强度,基于数值分析和抽样实现参数学习,建立力学贝叶斯网络;以一榀钢桁架模型的4个单元最大应力作为已知证据输入建立的贝叶斯网络,推理其余单元的最大应力以及体系状态概率. 研究结果表明:在监测单元最大应力已知的情况下,利用力学贝叶斯网络可以估计其余各单元的最大应力值,评估的所有单元应力与观测值间的决定系数 ${R^2}$=0.9992,表现出较强一致性. 与此同时,更靠近已知单元的估计结果更为精确,可以为监测点的选取提供参考. 此外,推理的桁架体系状态概率与观测数据一致,可以为桁架结构体系安全评定提供参考.
关键词:
钢桁架,
结构安全评估,
力学贝叶斯网络,
条件概率分布,
贝叶斯网络拓扑
|
|
[1] |
胡长远, 唐和生, 薛松涛, 等 桁架结构可靠性优化设计的微分演化算法[J]. 江苏大学学报: 自然科学版, 2013, 34 (2): 234- 238 HU Chang-yuan, TANG He-sheng, XUE Song-tao, et al Differential evolution algorithm of reliability optimization for truss structure[J]. Journal of Jiangsu University: Natural Science Edition, 2013, 34 (2): 234- 238
doi: 10.3969/j.issn.1671-7775.2013.02.020
|
|
|
[2] |
KUBICKA K, RADON U Proposal for the assessment of steel truss reliability under fire conditions[J]. Archives of Civil Engineering, 2015, 61 (4): 141- 154
doi: 10.1515/ace-2015-0041
|
|
|
[3] |
何江飞, 高博青 桁架结构的易损性评价及破坏场景识别研究[J]. 浙江大学学报: 工学版, 2012, 46 (9): 1633- 1637 HE Jiang-fei, GAO Bo-qing Vulnerability assessment and failure scenarios identification of truss structures[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (9): 1633- 1637
doi: 10.3785/j.issn.1008-973X.2012.09.013
|
|
|
[4] |
陈卫东, 李建操, 于艳春, 等 高效识别桁架结构主要失效模式的一种新方法[J]. 力学学报, 2013, 45 (2): 236- 244 CHEN Wei-dong, LI Jian-cao, YU Yan-chun, et al A new method of identifying main failure mode about truss structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45 (2): 236- 244
doi: 10.6052/0459-1879-12-248
|
|
|
[5] |
BROWNJOHN J M W Structural health monitoring of civil infrastructure[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2007, 365 (1851): 589- 622
|
|
|
[6] |
DING Z, LI J, HAO H Structural damage identification by sparse deep belief network using uncertain and limited data[J]. Structural Control and Health Monitoring, 2020, 27 (5): 1- 20
|
|
|
[7] |
黄影平 贝叶斯网络发展及其应用综述[J]. 北京理工大学学报, 2013, 33 (12): 1211- 1219 HUANG Ying-ping Survey on Bayesian network development and application[J]. Transactions of Beijing Institute of Technology, 2013, 33 (12): 1211- 1219
doi: 10.3969/j.issn.1001-0645.2013.12.001
|
|
|
[8] |
ZHU M M, LIU S Y, JIANG J W A novel divergence for sensitivity analysis in Gaussian Bayesian networks[J]. International Journal of Approximate Reasoning, 2017, 90: 37- 55
doi: 10.1016/j.ijar.2017.07.002
|
|
|
[9] |
GOMEZ-VILLEGAS M A, MAIN P, SUSI R The effect of block parameter perturbations in Gaussian Bayesian networks: sensitivity and robustness[J]. Information Sciences, 2013, 222: 439- 458
doi: 10.1016/j.ins.2012.08.004
|
|
|
[10] |
LANGSETH H, PORTINALE L Bayesian networks in reliability[J]. Reliability Engineering and System Safety, 2007, 92 (1): 92- 108
doi: 10.1016/j.ress.2005.11.037
|
|
|
[11] |
WEBER P, MEDINA-OLIVA G, SIMON C, et al Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas[J]. Engineering Applications of Artificial Intelligence, 2012, 25 (4): 671- 682
doi: 10.1016/j.engappai.2010.06.002
|
|
|
[12] |
TIEN I, KIUREGHIAN A D Reliability assessment of critical infrastructure using Bayesian networks[J]. Journal of Infrastructure Systems, 2017, 23 (4): 04017025
doi: 10.1061/(ASCE)IS.1943-555X.0000384
|
|
|
[13] |
吴子燕, 王其昂, 孙鸿宾, 等 基于链式贝叶斯网络的结构可靠性分析[J]. 计算力学学报, 2016, 33 (1): 22- 27 WU Zi-yan, WANG Qi-ang, SUN Hong-bin, et al Structural reliability analysis based on chain-like Bayesian network[J]. Chinese Journal of Computational Mechanics, 2016, 33 (1): 22- 27
doi: 10.7511/jslx201601004
|
|
|
[14] |
FANG S E, TAN J L, ZHANG X H Safety evaluation of truss structures using nested discrete Bayesian networks[J]. Structural Health Monitoring, 2020, 19 (6): 1924- 1936
doi: 10.1177/1475921720907888
|
|
|
[15] |
贺炜, 潘泉, 张洪才 贝叶斯网络结构学习的发展与展望[J]. 信息与控制, 2004, 33 (2): 185- 190 HE Wei, PAN Quan, ZHANG Hong-cai Development and prospect of Bayesian network structure learning[J]. Information and Control, 2004, 33 (2): 185- 190
doi: 10.3969/j.issn.1002-0411.2004.02.013
|
|
|
[16] |
柴慧敏, 赵昀瑶, 方敏 利用先验正态分布的贝叶斯网络参数学习[J]. 系统工程与电子技术, 2018, 40 (10): 2370- 2375 CHAI Hui-min, ZHAO Yun-yao, FANG Min Learning Bayesian networks parameters by prior knowledge of normal distribution[J]. Systems Engineering and Electronics, 2018, 40 (10): 2370- 2375
doi: 10.3969/j.issn.1001-506X.2018.10.31
|
|
|
[17] |
CHICKERING D M Learning Bayesian networks is NP-complete[J]. Learning from Data, 1996, 112: 121- 130
|
|
|
[18] |
HERSKOVITS E. Computer-based probabilistic network construction [D]. California: Stanford University, 1991.
|
|
|
[19] |
刘浩然, 孙美婷, 李雷, 等 基于蚁群节点寻优的贝叶斯网络结构算法研究[J]. 仪器仪表学报, 2017, 38 (1): 143- 150 LIU Hao-ran, SUN Mei-ting, LI Lei, et al Study on Bayesian network structure learning algorithm based on ant colony node order optimization[J]. Chinese Journal of Scientific Instrument, 2017, 38 (1): 143- 150
doi: 10.3969/j.issn.0254-3087.2017.01.019
|
|
|
[20] |
JENSEN F V, NIELSEN T D. Bayesian networks and decision graphs [M]. 2nd ed. New York: Springer, 2007.
|
|
|
[21] |
肖秦琨, 高嵩. 贝叶斯网络在智能信息处理中的应用[M]. 北京: 国防工业出版社, 2012.
|
|
|
[22] |
SHACHTER R D, KENLEY C R Gaussian influence diagrams[J]. Management Science, 1989, 35 (5): 527- 550
doi: 10.1287/mnsc.35.5.527
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|