Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (12): 2264-2270    DOI: 10.3785/j.issn.1008-973X.2019.12.002
Mechanical and Energy Engineering     
Rheological distribution algorithm of cement paste based on particle-flow-interaction theory
Xiao-tian LI(),Chu-xin WANG,Yong-qiang YU
School of Mechanical Engineering, Tongji University, Shanghai 201804, China
Download: HTML     PDF(1062KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An iterative algorithm based on theoretical fluid dynamics was proposed to shorten the simulation time of the cement paste in rotary viscometer. The flow field was layered radially according to the central symmetry of the flow field. An iterative algorithm was constructed under the assumption of continuity and uniformity of the fluid in the layer. The shear rate of each layer was calculated with Reiner-Riwlin Equation, and the rheological parameters of cement paste in the flow field were further calculated with particle-flow-interaction (PFI) theory. The average error between the simulation results of the iterative algorithm and that of the finite difference method was 0.89%. The average error between the simulation results of the iterative algorithm and the experimental results was 4.23%. Compared with the finite difference method, the simulation time was shortened from 5 days to 2.55 seconds, thus the calculation efficiency was greatly improved. The algorithm can be used for efficient simulation for cement paste flow field in rotary viscometer, and also for fast calibration of PFI parameters of cement paste.



Key wordscement paste      particle-flow-interaction (PFI) theory      theoretical fluid mechanics      Reiner-Riwlin equation      iterative operation     
Received: 08 November 2018      Published: 17 December 2019
CLC:  TU 528.1  
Cite this article:

Xiao-tian LI,Chu-xin WANG,Yong-qiang YU. Rheological distribution algorithm of cement paste based on particle-flow-interaction theory. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2264-2270.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.12.002     OR     http://www.zjujournals.com/eng/Y2019/V53/I12/2264


基于颗粒流交互理论的水泥净浆流变分布算法

为缩短回转黏度仪中水泥净浆流场的仿真运算时间,提出一种基于理论流体力学的迭代算法. 根据流场中心对称的性质,对流场进行径向分层;在层内流体连续、均匀的假设下,构建迭代算法,在层内运用雷诺-里符林公式计算每层的剪切速率,并通过颗粒流交互(PFI)理论进一步计算流场中水泥净浆的流变特性参数. 迭代算法的仿真结果与有限差分方法仿真结果的平均误差为0.89%,与试验结果的平均误差为4.23%;迭代算法的仿真用时仅为2.55 s,与有限差分法(仿真用时为5 d)相比,运算效率大大提高. 所提算法可用于回转黏度仪中水泥净浆流场的高效仿真,且可用于水泥净浆PFI参数的快速标定.


关键词: 水泥净浆,  颗粒流交互(PFI)理论,  理论流体力学,  雷诺-里符林公式,  迭代运算 
Fig.1 Diagram of grid partition by finite difference method
Fig.2 Schematic diagram of rotor strcture in rotational viscometer
Fig.3 Radial stratification diagram of viscometer flow field
Fig.4 Update flow chart of viscometer flow field in single time step
Fig.5 Update flow chart of internal rheological parameters of viscometer flow field
Fig.6 Speed curve of viscosimeter with iterative algorithm
PFI参数 单位 数值 PFI参数 单位 数值
$\widetilde {{\eta _0}}$ Pa·s 0.65 U0 ? 1
a1B3n32/3 Pa·s 33 ma s 30
$\widetilde {{\tau _0}}$ Pa 0 mb s 0
a2B3n32/3 Pa·s 24 ? ? ?
Tab.1 Simulation parameter settings of iterative algorithm and finite difference method
Fig.7 Comparison of simulation results between iterative algorithm and finite difference method
PFI参数 单位 数值 PFI参数 单位 数值
$\widetilde {{\eta _0}}$ Pa·s 0.451 8 U0 ? 39.259 5
a1B3n32/3 Pa·s 2.220 8 ma s 30
$\widetilde {{\tau _0}}$ Pa 0.601 9 mb s 0
a2B3n32/3 Pa·s 5.300 0 ? ? ?
Tab.2 Simulation parameter settings of iterative algorithm in variable speed test
Fig.8 Experimental speed curve of viscosimeter
Fig.9 Comparisons between experimental results and simulation results of iterative algorithm
[1]   REINER M, EYRING H Deformation and flow. an elementary introduction to theoretical rheology[J]. Physics Today, 1950, 3 (4): 35- 36
[2]   FEYS D, WALLEVIK J E, YAHIA A, et al Extension of the Reiner-Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers[J]. Materials and Structures, 2013, 46 (1/2): 289- 311
[3]   BRAUN I, REINER M Problems of cross-viscosity[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1952, 5 (1): 42- 53
doi: 10.1093/qjmam/5.1.42
[4]   TATTERSALL G H, BANFILL P. The rheology of fresh concrete [M]. Pitman Advanced Publishing Program, 1983.
[5]   王复生 水泥混凝土统一流变模型[J]. 武汉理工大学学报, 1984, (1): 70- 73
WANG Fu-sheng Unified rheological model of cement concrete[J]. Journal of Wuhan University of Technology, 1984, (1): 70- 73
[6]   BINGHAM E C, REINER M The rheological properties of cement and cement-mortar-stone[J]. Physics, 1933, 4 (3): 88- 96
doi: 10.1063/1.1745167
[7]   MEWIS J Thixotropy: a general review[J]. Journal of Non-Newtonian Fluid Mechanics, 1979, 6 (1): 1- 20
doi: 10.1016/0377-0257(79)87001-9
[8]   WALLEVIK J E. Rheology of particle suspensions: fresh concrete, mortar and cement paste with various types of lignosulfonates [D]. Trondheim: Norwegian University of Science and Technology, 2003..
[9]   王复生, 关瑞芳, 秦晓娟, 等 新拌水泥浆体流变性能及流变模型的探讨[J]. 硅酸盐通报, 2004, 23 (6): 34- 37
WANG Fu-sheng, GUAN Rui-fang, QIN Xiao-juan, et al Study on rheological properties and rheological model of fresh cement paste[J]. Bulletin of The Chinese Ceramic Society, 2004, 23 (6): 34- 37
doi: 10.3969/j.issn.1001-1625.2004.06.009
[10]   ROUSSEL N, OVARLEZ G, GARRAULT S, et al The origins of thixotropy of fresh cement pastes[J]. Cement and Concrete Research, 2012, 42 (1): 148- 157
doi: 10.1016/j.cemconres.2011.09.004
[11]   LAPASIN R, LONGO V, RAJGELJ S Thixotropic behaviour of cement pastes[J]. Cement and Concrete Research, 1979, 9 (3): 309- 318
doi: 10.1016/0008-8846(79)90123-6
[12]   HATTORI K. A new viscosity equation for non-Newtonian suspensions and its application [C] // Proceeding of the RILEM Colloquium on Properties of Fresh Concrete. London: [s.n.], 1990: 83-92.
[13]   BANFILL P F G. Rheology of Fresh Cement and Concrete: Proceedings of an International Conference, Liverpool, 1990 [M]. [S.l.]: CRC Press, 2014.
[14]   WALLEVIK J E. Particle flow interaction theory-thixotropic behavior and structural breakdown [C] // Proceedings of the Conference on Our World of Concrete and Structures. Singapore: [s. n.]. 2011: 14-16.
[15]   WALLEVIK J E Rheological properties of cement paste: Thixotropic behavior and structural breakdown[J]. Cement and Concrete Research, 2009, 39 (1): 14- 29
doi: 10.1016/j.cemconres.2008.10.001
[16]   WALLEVIK J E Microstructure-rheology: thixotropy and workability loss[J]. Nordic Concrete Research Publications, 2004, 31: 16
[17]   LANGTANGEN H P, HUSTON R L Computational partial differential equations: numerical methods and Diffpack programming[J]. Computer Physics Communications, 2003, 161 (3): 181- 182
[18]   FLETCHER C A J. Computational Techniques for Fluid Dynamics [M]. [S.l.]: World Publishing Corporation, 1991.
[19]   ANDERSON J D, WENDT J. Computational fluid dynamics [M]. New York: McGraw-Hill, 1995.
[1] WANG Guo-qing, CHENG Zhuang, WANG Zhen-yu, CHEN Feng, ZHANG Yi. Shear capacity of composite member of high strength grouted cement paste and steel plate with shear keys[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1282-1287.