Mechanical and Energy Engineering |
|
|
|
|
Effect of particle size on liner wear in semi-autogenous mill |
Lei XU1,2( ),Kun LUO2,Yong-zhi ZHAO1,*( ),Jian-ren FAN2,Ke-fa CEN2 |
1. Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China 2. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The effect of particle size on liner wear in semi-autogenous grinding (SAG) mills was investigated using a numerical approach. The charge motion was calculated using discrete element method (DEM) and the liner wear was predicted using shear impact energy model (SIEM). The simulation results indicate that the particle size has evident influence on the liner wear. The liner wear increases with the increase of particle size; the increasing rate is evidently larger when the particle size is small (e.g. d=30 mm). The liner wear mainly occurs during the intense collisions in the bulk toe, which is not altered by the particle size. The kinetic energy of the large particles is significantly larger than that of the small particles. The large particles needs longer time to change the motion state compared with the small particles, which leads to longer intense collisions. The particle size has little influence on the distribution of wear on the lifters.
|
Received: 02 November 2018
Published: 17 December 2019
|
|
Corresponding Authors:
Yong-zhi ZHAO
E-mail: zjuxulei@163.com;yzzhao@zju.edu.cn
|
物料粒径对半自磨机衬板磨损的影响
采用数值计算方法分析粒径对半自磨(SAG)机衬板磨损的影响。采用离散单元法(DEM)描述物料运动,采用切向碰撞能量磨损模型(SIEM)预测壁面磨损. 结果表明,粒径大小对衬板磨损存在显著影响. 粒径增大,衬板磨损亦随之增大;当粒径较小时(如:d=30 mm),磨损增幅尤为明显. 提升条的磨损主要在经过底脚区与颗粒发生剧烈碰撞时产生,不同粒径大小下均如此. 大颗粒获得的动能要远远大于小颗粒,且相比于小颗粒,大颗粒改变运动状态需要更长的时间,导致剧烈磨损的持续时间亦明显增加. 粒径大小对磨损在提升条上的分布无明显影响.
关键词:
离散单元法(DEM),
物料粒径,
半自磨(SAG)机,
衬板,
磨损,
冲蚀,
研磨
|
|
[1] |
姚军, 曾子华, 周芳, 等 颗粒射流冲击材料行为研究[J]. 北京航空航天大学学报, 2017, 43 (11): 2266- 2272 YAO Jun, ZENG Zi-hua, ZHOU Fang, et al Investigation of behaviour of particle impact on material by impinging jet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43 (11): 2266- 2272
|
|
|
[2] |
阎维平, 马凯, 高正阳, 等 增压富氧燃煤锅炉省煤器管束磨损研究[J]. 西安交通大学学报, 2013, 47 (3): 53- 59 YAN Wei-ping, MA Kai, GAO Zheng-yang, et al Erosion of economizer tube bundles in pressurized oxy-fuel coal-fired boiler[J]. Journal of Xi’an Jiaotong University, 2013, 47 (3): 53- 59
doi: 10.7652/xjtuxb201303010
|
|
|
[3] |
HU G, OTAKI H, WATANUKI K Motion analysis of a tumbling ball mill based on non-linear optimization[J]. Minerals Engineering, 2000, 13 (8): 933- 947
|
|
|
[4] |
CLEARY P W, HOYER D Centrifugal mill charge motion and power draw: comparison of DEM predictions with experiment[J]. International Journal of Mineral Processing, 2000, 59 (2): 131- 148
doi: 10.1016/S0301-7516(99)00063-0
|
|
|
[5] |
赵跃民, 张曙光, 焦红光, 等 振动平面上粒群运动的离散元模拟[J]. 中国矿业大学学报, 2006, 35 (5): 586- 590 ZHAO Yue-min, ZHANG Shu-guang, JIAO Hong-guang, et al Simulation of discrete element of particles motion on the vibration plane[J]. Journal of China University of Mining and Technology, 2006, 35 (5): 586- 590
doi: 10.3321/j.issn:1000-1964.2006.05.005
|
|
|
[6] |
田瑞霞, 焦红光 离散元软件PFC在矿业工程中的应用现状及分析[J]. 矿冶, 2011, 20 (1): 79- 82 TIAN Rui-xia, JIAO Hong-guang Application status and analysis of discrete element software PFC in mining engineering[J]. Mining and Metallurgy, 2011, 20 (1): 79- 82
doi: 10.3969/j.issn.1005-7854.2011.01.019
|
|
|
[7] |
ZHU H P, ZHOU Z Y, YANG R Y, et al Discrete particle simulation of particulate systems: theoretical developments[J]. Chemical Engineering Science, 2007, 62 (13): 3378- 3396
doi: 10.1016/j.ces.2006.12.089
|
|
|
[8] |
CLEARY P W Charge behaviour and power consumption in ball mills: sensitivity to mill operating conditions, liner geometry and charge composition[J]. International Journal of Mineral Processing, 2001a, 63 (2): 79- 114
doi: 10.1016/S0301-7516(01)00037-0
|
|
|
[9] |
MISHRA B K A review of computer simulation of tumbling mills by the discrete element method: Part II—Practical applications[J]. International Journal of Mineral Processing, 2003, 71 (1): 95- 112
|
|
|
[10] |
KALALA J T, BWALYA M, MOYS M H Discrete element method (DEM) modelling of evolving mill liner profiles due to wear. Part II. Industrial case study[J]. Minerals Engineering, 2005, 18 (15): 1392- 1397
doi: 10.1016/j.mineng.2005.02.010
|
|
|
[11] |
CLEARY P W, OWEN P Effect of liner design on performance of a HICOM? mill over the predicted liner life cycle[J]. International Journal of Mineral Processing, 2015, 134: 11- 22
doi: 10.1016/j.minpro.2014.11.003
|
|
|
[12] |
POWELL M S, WEERASEKARA N S, COLE S, et al DEM modelling of liner evolution and its influence on grinding rate in ball mills[J]. Minerals Engineering, 2011, 24 (3): 341- 351
|
|
|
[13] |
崔泽群. 基于离散元法的球磨机最优化设计理论研究[D]. 杭州: 浙江大学, 2013. CUI Ze-qun. Optimal design theory of ball mill based on discrete element method[D]. Hangzhou: Zhejiang University, 2013.
|
|
|
[14] |
李鸿程. 基于离散单元法的球磨机工作参数优化[D]. 昆明: 昆明理工大学, 2013. LI Hong-cheng. Research on working parameters optimization of ball mill using discrete element method[D]. Kunming: Kunming University of Science and Technology, 2013.
|
|
|
[15] |
陶寅, 房怀英, 杨建红, 等 立轴冲击破碎机加速板磨损仿真分析[J]. 矿山机械, 2017, 45 (6): 37- 42 TAO Yin, FANG Huai-ying, YANG Jiang-hong, et al Simulation and analysis on wear of accelerating board of vertical-shaft impact crusher[J]. Mining and Processing Equipment, 2017, 45 (6): 37- 42
doi: 10.3969/j.issn.1001-3954.2017.06.010
|
|
|
[16] |
FINNIE I Erosion of surfaces by solid particles[J]. Wear, 1960, 3 (2): 87- 103
doi: 10.1016/0043-1648(60)90055-7
|
|
|
[17] |
LYCZKOWSKI R W, BOUILLARD J X State-of-the-art review of erosion modeling in fluid/solids systems[J]. Progress in Energy and Combustion Science, 2002, 28 (6): 543- 602
doi: 10.1016/S0360-1285(02)00022-9
|
|
|
[18] |
ZHAO Y, XU L, ZHENG J CFD–DEM simulation of tube erosion in a fluidized bed[J]. AIChE Journal, 2017, 63: 418- 437
doi: 10.1002/aic.15398
|
|
|
[19] |
XU L, LUO K, ZHAO Y Numerical prediction of wear in SAG mills based on DEM simulations[J]. Powder Technology, 2018, 329: 353- 363
doi: 10.1016/j.powtec.2018.02.004
|
|
|
[20] |
赵永志, 程易 水平滚筒内二元颗粒体系径向分离模式的数值模拟研究[J]. 物理学报, 2008, 57 (1): 322- 328 ZHAO Yong-zhi, CHENG Yi Numerical simulation of radial segregation patterns of binary granular systems in a rotating horizontal drum[J]. Acta Physica Sinica, 2008, 57 (1): 322- 328
doi: 10.3321/j.issn:1000-3290.2008.01.052
|
|
|
[21] |
TING J M, CORKUM B T Computational laboratory for discrete element geomechanics[J]. Journal of Computing in Civil Engineering, 1992, 6 (2): 129- 146
doi: 10.1061/(ASCE)0887-3801(1992)6:2(129)
|
|
|
[22] |
FINNIE I, WOLAK J, KABIL Y Erosion of metals by solid particles[J]. Journal of Materials, 1967, 2 (3): 682- 700
|
|
|
[23] |
BANISI S, HADIZADEH M 3-D liner wear profile measurement and analysis in industrial SAG mills[J]. Minerals Engineering, 2007, 20 (2): 132- 139
doi: 10.1016/j.mineng.2006.07.008
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|