Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (3): 519-529    DOI: 10.3785/j.issn.1008-973X.2021.03.012
    
Equivalent model for pollutant transport parameters of layered landfill liners
Liang WANG1,2(),Hai-jian XIE1,2,*(),Jia-wei WU1,Yun-min CHEN1,Hao DING1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China
2. Center for Balanced Architecture, Zhejiang University, Hangzhou 310028, China
Download: HTML     PDF(1547KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An equivalent analytical model for pollutant transport parameters based on time moment convolution was proposed in order to efficiently assess the performance of layered landfill liners. Expressions of equivalent seepage velocity and diffusion coefficient of multilayer soil liners were derived. The proposed equivalent model was verified by experimental data from soil column tests. The equivalent calculation of geomembrane (GM) + compacted clay liner (CCL) + natural attenuation layer (AL) and GM + geosynthetic clay liner (GCL) + AL were carried out in terms of relative concentration, instantaneous flux and accumulative flux at bottom of the liner system. Results show that the relative concentration at the bottom of the liner system is the more conservative parameter for assessment of the layered landfill liner system. GCL composite liner has better performance with the increase of design leachate head and AL thickness. Based on the standard with Cl? breakthrough time 100 years, the total thickness for the case with GCL composite liner can be 0.45 m less than that of the CCL composite liner when leachate head is 15 m. The antifouling capacity of geomembrane increases with the increase of leachate head. The equivalent CCL thickness of geomembrane increases log-linearly with the service life.



Key wordslandfill      layered liner      contaminant transport      equivalency analysis      compacted clay liner      geosynthetic clay liner (GCL)     
Received: 25 February 2020      Published: 25 April 2021
CLC:  TU 111  
Fund:  国家自然科学基金资助项目(51988101,41977223,41931289);浙江省杰出青年基金资助项目(LR20E080002);国家重点研发计划资助项目(2018YFC1802303)
Corresponding Authors: Hai-jian XIE     E-mail: Leonwang0416@zju.edu.cn;xiehaijian@zju.edu.cn
Cite this article:

Liang WANG,Hai-jian XIE,Jia-wei WU,Yun-min CHEN,Hao DING. Equivalent model for pollutant transport parameters of layered landfill liners. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 519-529.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.03.012     OR     http://www.zjujournals.com/eng/Y2021/V55/I3/519


填埋场成层衬垫污染物运移参数等效模型

为了高效评价填埋场成层衬垫的防污性能,提出基于时间矩卷积的污染物运移参数等效分析模型. 给出多层衬垫等效渗流速度和扩散系数表达式;采用土柱实验数据验证模型的合理性和可靠性;基于衬垫系统底部相对浓度、瞬时通量及累计通量等对填埋场土工膜(GM)+压实黏土衬垫(CCL)+天然衰减层(AL)及GM+钠基膨润土防水毯(GCL)+AL不同复合衬垫进行等效计算. 结果表明,衬垫底部相对浓度更适合等效计算. 随设计水头与AL厚度增加,GCL复合衬垫的防污性能较好. 基于Cl?击穿时间100 a标准,当水头为15 m时,与采用CCL相比,采用GCL复合衬垫可以使总厚度减少0.45 m. 土工膜防污能力随水头增加而增强,土工膜等效的CCL厚度随服役年限呈对数线性增大.


关键词: 填埋场,  成层衬垫,  污染物运移,  等效性分析,  压实黏土衬垫,  钠基膨润土防水毯(GCL) 
Fig.1 Schematic graph of layered landfill liners
衬垫 L/m D/(m2·a?1) k/(m·s?1) $\varphi $ θ/(m2·s?1)
GM 0.0015 ? ? ?
CCL 0.7500 0.020 1×10?9 0.4 1.6×10?8
GCL 0.0070 0.005 2×10?10 0.7 2.0×10?10
AL 2.0000 0.022 1×10?7 0.3 ?
Tab.1 Liner material parameter value
Fig.2 Comparison of relative concentration profiles of POLLUTE v7 and proposed solution for GM + GCL + AL
Fig.3 Comparison of relative concentration breakthrough curves of POLLUTE v7 and proposed solution for GM + GCL + AL
Fig.4 Comparison of accumulative flux breakthrough curves of POLLUTE v7 and proposed solution for GM + GCL + AL
Fig.5 Comparison of relative concentration breakthrough curves of soil column experiment data from reference [28] and proposed solution
Fig.6 Comparison of relative concentration breakthrough curves of soil column experiment data from reference [26]、[27] and proposed solution
Fig.7 Relative concentration equivalence diagram of GM + CCL + AL and GM + GCL + AL liners
Fig.8 Instantaneous flux equivalence diagram of GM + CCL + AL and GM + GCL + AL liners
Fig.9 Accumulative flux equivalence diagram of GM + CCL + AL and GM + GCL + AL liners
Fig.10 Comparison of equivalent AL thickness of GCL and CCL (1 m AL) in terms of relative concentration, instantaneous flux and accumulative flux
Fig.11 Comparison diagram of equivalent AL thickness of GCL and CCL (2 m AL) in terms of relative concentration, instantaneous flux and accumulative flux
Fig.12 Comparison of equivalent AL thickness of GCL and CCL (3 m AL) in terms of relative concentration, instantaneous flux and accumulative flux
hw/m 1.5 mm GM+0.75 m CCL+AL ve/ (10?3 m·a?1) De/(10?3m2·a?1) PL Cb/C0 JI/(10?3g·m?2·a?1) JA/(g·m?2)
0.3 1 m AL 1.78 22.03 0.14 0.43 2.31 0.18
15.0 1 m AL 14.54 22.03 1.16 0.65 5.06 0.37
60.0 1 m AL 53.62 22.03 4.26 0.98 18.25 1.38
0.3 2 m AL 2.76 22.28 0.34 0.23 1.50 0.08
15.0 2 m AL 16.04 22.28 1.98 0.44 3.92 0.20
60.0 2 m AL 56.70 22.28 7.00 0.95 18.07 1.10
0.3 3 m AL 3.72 22.31 0.62 0.10 0.82 0.03
15.0 3 m AL 17.21 22.31 2.89 0.26 2.63 0.09
60.0 3 m AL 58.52 22.31 9.83 0.89 17.38 0.83
Tab.2 Equivalent parameters of CCL composite liner in terms of relative concentration based on 100-year breakthrough time
hw/m 1.5 mm GM+7 mm GCL+AL ve/(10?3 m·a?1) De/(10?3 m2·a?1) PL Cb/C0 JI/(10?3 g·m?2·a?1) JA/(g·m?2)
0.3 1.73 m AL 1.65 21.81 0.13 0.43 2.00 0.16
15.0 1.67 m AL 13.60 21.81 1.05 0.65 4.28 0.32
60.0 1.56 m AL 51.01 21.79 3.67 0.98 15.30 1.20
0.3 2.67 m AL 2.13 21.88 0.26 0.23 1.33 0.06
15.0 2.48 m AL 12.82 21.87 1.46 0.44 3.21 0.18
60.0 2.05 m AL 48.06 21.84 4.53 0.95 14.18 0.97
0.3 3.61 m AL 2.53 21.91 0.42 0.10 0.73 0.03
15.0 3.30 m AL 12.23 21.90 1.94 0.26 2.11 0.09
60.0 2.60 m AL 45.23 21.88 5.40 0.89 12.82 0.75
Tab.3 Equivalent parameters of GCL composite liner in terms of relative concentration based on 100-year breakthrough time
Fig.13 Variation of equivalent CCL thickness of GM thickness with time based on relative concentration
[1]   中华人民共和国环境保护部, 中华人民共和国国家统计局, 中华人民共和国农业部. 第一次全国污染源普查公报[R]. 北京: 国家统计局, 2010.
[2]   严华祥. 有机污染物在复合衬垫系统中固结—扩散耦合运移解析模型[D]. 杭州: 浙江大学, 2017: 1-3.
YAN Hua-xiang. The analytical model for organic contaminant transport in composite liners considering the coupled effect of consolidation and diffusion [D]. Hangzhou: Zhejiang University, 2017: 1-3.
[3]   陈云敏 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36 (1): 1- 46
CHEN Yun-min A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (1): 1- 46
doi: 10.11779/CJGE201401001
[4]   USEPA. Municipal solid waste in United States: facts and figures for 2007 [R]. Washington, DC: EPA, 2008.
[5]   TCHOBANOGLOUS G, THEISEN H, VIGIL S. Integrated solid waste management: engineering principles and management issue [M]. New York: McGraw-Hill, 1993: 113-115.
[6]   徐辉. 高厨余垃圾生化—水力—力学相互作用大型模型试验及应用[D]. 杭州: 浙江大学, 2016: 6-7.
XU Hui. Large-scale experiment on biochemo-hydro-mechanical behaviors of high-food-waste-content MSW and applications [D]. Hangzhou: Zhejiang University, 2016: 6-7.
[7]   CHEN Y M, ZHAN L T, LI Y C. Development of leachate mounds and control of leachate-related failures at MSW landfills in humid regions [C]// Proceedings of 6th International Conference on Environmental Geotechnics. India: Tata McGraw Hill Education, 2010: 8-12.
[8]   陈云敏, 兰吉武, 李育超, 等 垃圾填埋场渗沥液水位壅高及工程控制[J]. 岩石力学与工程学报, 2014, 33 (1): 154- 163
CHEN Yun-min, LAN Ji-wu, LI Yu-chao, et al Development and control of leachate mound in MSW landfills[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (1): 154- 163
[9]   生活垃圾填埋场污染控制标准: GB 16889—2008 [S]. 北京: 中国环境科学出版社, 2008: 5.
[10]   生活垃圾卫生填埋处理技术规范: GB 50869—2013 [S]. 北京: 中国计划出版社, 2013: 18-23.
[11]   生活垃圾卫生填埋场防渗系统工程技术规范: CJJ 113—2007 [S]. 北京: 中国建筑工业出版社, 2007: 3-8.
[12]   谢海建, 楼章华, 陈云敏, 等 污染物通过GCL/AL防渗层的对流-弥散解析解[J]. 科学通报, 2010, 55 (21): 2153- 2163
XIE Hai-jian, LOU Zhang-hua, CHEN Yun-min, et al An analytical solution to contaminant advection and dispersion through a GCL/AL liner system[J]. Chinese Science Bulletin, 2010, 55 (21): 2153- 2163
[13]   包承纲. 土工合成材料应用原理与工程实践[M]. 北京: 中国水利水电出版社, 2008: 97-99.
[14]   介玉新, 彭涛, 傅志斌, 等 土工合成材料黏土衬垫的渗透性研究[J]. 土木工程学报, 2009, 42 (2): 92- 97
JIE Yu-xin, PENG Tao, FU Zhi-bin, et al A study on the permeability of geosynthetic clay liners[J]. China Civil Engineering Journal, 2009, 42 (2): 92- 97
doi: 10.3321/j.issn:1000-131X.2009.02.014
[15]   FOOSE G J, BENSON C H, EDIL T B Comparison of solute transport in three composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128 (5): 391- 403
doi: 10.1061/(ASCE)1090-0241(2002)128:5(391)
[16]   ROWE R K, BRACHMAN R W I Assessment of equivalence of composite liners[J]. Geosynthetics International, 2004, 11 (4): 273- 286
doi: 10.1680/gein.2004.11.4.273
[17]   陈云敏, 谢海建, 柯瀚, 等 层状土中污染物的一维扩散解析解[J]. 岩土工程学报, 2006, 28 (4): 521- 524
CHEN Yun-min, XIE Hai-jian, KE Han, et al Analytical solution of contaminant diffusion through multi-layered soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28 (4): 521- 524
doi: 10.3321/j.issn:1000-4548.2006.04.018
[18]   谢海建, 陈仁朋, 陈云敏, 等 考虑非线性吸附时溶质在有限厚度粘土中的一维扩散解[J]. 环境科学学报, 2008, 28 (2): 376- 383
XIE Hai-jian, CHEN Ren-peng, CHEN Yun-min, et al An analytical solution of solute diffusion through soils with finite depth under non-linear adsorption conditions[J]. Acta Scientiae Circumstantiae, 2008, 28 (2): 376- 383
doi: 10.3321/j.issn:0253-2468.2008.02.024
[19]   张虎元, 冯蕾, 吴军荣, 等 填埋场防渗衬垫等效替代研究[J]. 岩土力学, 2009, 30 (9): 2759- 2762
ZHANG Hu-yuan, FENG Lei, WU Jun-rong, et al Alternative liner and design principles for municipal solid waste landfills[J]. Chinese Journal of Geotechnical Engineering, 2009, 30 (9): 2759- 2762
doi: 10.3969/j.issn.1000-7598.2009.09.037
[20]   冯蕾. 垃圾填埋场替代衬垫研究[D]. 兰州: 兰州大学, 2009: 54-63.
FENG Lei. Study on alternative liner for landfill [D]. Lanzhou: Lanzhou University, 2009: 54-63.
[21]   CLEALL P J, LI Y C Analytical solution for diffusion of VOCs through composite landfill liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137 (9): 850- 854
doi: 10.1061/(ASCE)GT.1943-5606.0000506
[22]   冯世进, 焦阳, 郑奇腾 考虑垃圾体成层性的渗滤液回灌运移规律[J]. 地下空间与工程学报, 2014, 10 (6): 1263- 1269
FENG Shi-jin, JIAO Yang, ZHENG Qi-teng Research on leachate recirculation in landfills with considering MSW stratification[J]. Chinese Journal of Underground Space and Engineering, 2014, 10 (6): 1263- 1269
[23]   吴珣, 施建勇, 何俊 考虑降解时有机污染物在完好复合衬垫中的扩散分析[J]. 中南大学学报: 自然科学版, 2015, 46 (12): 4725- 4731
WU Xun, SHI Jian-yong, HE Jun Analysis of organic contaminant diffusion through intact composite liners considering degradation[J]. Journal of Central South University: Science and Technology, 2015, 46 (12): 4725- 4731
[24]   张文杰, 赵培, 贾文强 一维对流-扩散试验各种边界条件及其统一形式解析解[J]. 岩土力学, 2015, 36 (10): 2759- 2764
ZHANG Wen-jie, ZHAO Pei, JIA Wen-qiang Boundary conditions of one-dimensional convection-diffusion column tests and unified analytical solution[J]. Rock and Soil Mechanics, 2015, 36 (10): 2759- 2764
[25]   ROWE R K, BRACHMAN R W I. Pollutant migration through a nonhomogeneous soil [CP/CD]. V7 ed. Whitby: GAEA Environmental Engineering Ltd, 2005.
[26]   杨艳. 土壤溶质运移特征实验研究[D]. 西安: 西安理工大学, 2006: 22-26.
YANG Yan. Experimental studies on soil solute transport [D]. Xi'an: Xi'an University of Technology, 2006: 22-26.
[27]   杨艳, 王全九 层状土溶质运移特性及其参数分析[J]. 灌溉排水学报, 2005, (6): 19- 21
YANG Yan, WANG Quan-jiu Analysis of the feature of layered soil solute transport and its parameter[J]. Journal of Irrigation and Drainage, 2005, (6): 19- 21
[28]   SHARMA P K, SAWANT V A, SHUKLA S K, et al Experimental and numerical simulation of contaminant transport through layered soil[J]. International Journal of Geotechnical Engineering, 2014, 8 (4): 345- 351
doi: 10.1179/1939787913Y.0000000014
[29]   ROWE R K, QUIGLEY R M, BRACHMAN R W I. Barrier systems for waste disposal facilities [M]. London: Spon Press, 2004.
[30]   CHEN Y M, WANG Y Z, XIE H J Breakthrough time-based design of landfill composite liners[J]. Geotextiles and Geomembranes, 2015, 43 (2): 196- 206
doi: 10.1016/j.geotexmem.2015.01.005
[31]   BARRY D A, PARKER J C Approximations for solute transport through porous media with flow transverse to layering[J]. Transport in Porous Media, 1987, 2 (1): 65- 82
[32]   OGATA A, BANKS R B. A solution of the differential equation of longitudinal dispersion in porous media [M]. Washington: U. S. Government. Printing Office, 1961: 3-4.
[33]   ARIS R On the dispersion of linear kinematic waves[J]. Proceedings of the Royal Society A, 1958, 245: 268- 277
[34]   SHACKELFORD C D Transit-time design of earthen barriers[J]. Engineering Geology, 1990, 29: 79- 94
doi: 10.1016/0013-7952(90)90083-D
[35]   XIE H J, CHEN Y M, LOU Z H An analytical solution to contaminant transport through composite liners with geomembrane defects[J]. Science China Technological Sciences, 2010, 53 (5): 1424- 1433
doi: 10.1007/s11431-010-0111-7
[36]   ROWE R K Short- and long-term leakage through composite liners[J]. Canadian Geotechnical Journal, 2012, 49 (2): 141- 169
doi: 10.1139/t11-092
[37]   兰吉武. 填埋场渗滤液产生、运移及水位雍高机理和控制[D]. 杭州: 浙江大学, 2012: 10-15.
LAN Ji-wu. Mechanism of leachate generation, transport and mound in MSW landfills and control of leachate level [D]. Hangzhou: Zhejiang University, 2012: 10-15.
[38]   张春华. 填埋场复合衬垫污染物热扩散运移规律及其优化设计方法[D]. 杭州: 浙江大学, 2018: 47-48.
ZHANG Chun-hua. Mechanisms for contaminant transport in landfill composite liners under thermal effect and its optimization design method [D]. Hangzhou: Zhejiang University, 2018: 47-48.
[39]   EGLOFFSTEIN T A Natural bentonites: influence of the ion exchange and partial desiccation on permeability and self-healing capacity of bentonites used in GCLs[J]. Geotextiles and Geomembranes, 2001, 19 (7): 427- 444
doi: 10.1016/S0266-1144(01)00017-6
[40]   MEER S R, BENSON C H Hydraulic conductivity of geosynthetic clay liners exhumed from landfill final covers[J]. Journal of Geotechnical and Geoenvironmental, 2007, 133 (5): 550- 563
doi: 10.1061/(ASCE)1090-0241(2007)133:5(550)
[41]   MERY J, MENDES M, MAZEAS L, et al Evaluating the environmental impact of leachate leakage from landfills through aged geosynthetic barrier materials: a focus on phenolic compounds[J]. Sustainable Environment Research, 2014, 24 (6): 401- 403
[42]   仵彦卿. 多孔介质渗流与污染物迁移数学模型[M]. 北京: 科学出版社, 2011: 298.
[43]   ZHANG W J, ZHANG G G, CHEN Y M Analyses on a high leachate mound in a landfill of municipal solid waste in China[J]. Environmental Earth Sciences, 2013, 70 (4): 1747- 1752
doi: 10.1007/s12665-013-2262-x
[44]   张海华, 张帆挺, 张栋棚, 等 杭州天子岭填埋库区“三高三超”安全研究[J]. 环境卫生工程, 2017, 25 (5): 90- 93
ZHANG Hai-hua, ZHANG Fan-ting, ZHANG Dong-peng, et al "Three high and three exceeding" safety research of Hangzhou Tianziling lanfill[J]. Environmental Sanitation Engineering, 2017, 25 (5): 90- 93
doi: 10.3969/j.issn.1005-8206.2017.05.029
[1] Song-lin YU,Han KE,Liang-tong ZHAN,Tao MENG,Yun-min CHEN,Ce YANG. Engineering properties of excavated soil and analysis of post-construction settlement and capacity for pit landfill[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2364-2376.
[2] Wei-guo JIAO,Liang-tong ZHANG,Yong-xin JI,Ming-wei HE. Analysis on long-term performance of capillary-barrier cover with unsaturated drainage layer[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1101-1109.
[3] PENG Zhao, LAN Ji-wu, ZHAN Liang-tong, HE Hai-jie, FU Yan-ming, ZHENG Xue-juan. Application of loading berm in landfill partial slip control[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 710-718.
[4] KE Han, DONG Ding, CHEN Yun-min, GUO Cheng, FENG Shi-jin. Nonlinear elastic model for municipal solid waste considering dilatancy effect[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2158-2164.
[5] ZHAN Liang tong, GONG Biao, LAN Ji wu, WANG Yu ze, CHEN Yun min. Field and numerical investigation on migration of leachate in loess soil[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1196-1202.
[6] LIU Hai long, ZHOU Jia wei, CHEN Yun min, LI Yu chao, ZHAN Liang tong. Evaluation of municipal solid waste landfill stabilization[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2336-2342.
[7] WAN Xiao-li, LI Yu-chao, KE Han, CHEN Yun-min, MEI Fu-liang, YING Feng. Time-domain analysis of variation of liquid head in
landfill’s drainage system
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 688-694.