Please wait a minute...
J4  2011, Vol. 45 Issue (4): 688-694    DOI: 10.3785/j.issn.1008-973X.2011.04.017
    
Time-domain analysis of variation of liquid head in
landfill’s drainage system
WAN Xiao-li1, LI Yu-chao1, KE Han1, CHEN Yun-min1, MEI Fu-liang2, YING Feng3
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310027, China;
2. Department of Civil Engineering, Jiaxing University, Jiaxing 314001, China; 3. East China Investigation and
Design Institute, CHECC, Hangzhou 310014, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The infiltration of the leachate in a landfill varies with several factors such as rainfall and water content of waste. Aiming at the problem, a method to calculate the variation of the liquid depth over landfill liner in time was presented based on the extended Dupuit assumption. The results from the method approached the results from steady state solution under constant inflowrate. The presented formula was rational compared with the results tested by Korfiatis. The parameter analysis showed that the maximum liquid depth was proportional to the maximum distance of flow. The increase of the dimensionless slope of drainage layer can effectively decrease the maximum liquid depth, and a greater hydraulic conductivity can be specified to prevent the over-height of liquid head.



Published: 05 May 2011
CLC:  TU 478  
Cite this article:

WAN Xiao-li, LI Yu-chao, KE Han, CHEN Yun-min, MEI Fu-liang, YING Feng. Time-domain analysis of variation of liquid head in
landfill’s drainage system. J4, 2011, 45(4): 688-694.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.04.017     OR     http://www.zjujournals.com/eng/Y2011/V45/I4/688


时域条件下填埋场导排系统水位变化规律

针对填埋场渗滤液入渗量随降雨量、垃圾含水量等因素不断变化这一问题,在扩展的Dupuit假定基础上推导导排系统瞬态水位计算方法.当入渗量恒定时,采用该方法计算的最终结果和稳态计算结果趋于一致.通过与Korfiatis等[10]的室内实验结果比较,该方法是合理和相对准确的.通过参数分析发现,对于排水系统来说,排水距离越长,达到稳定水位所需要的时间越长,适当增加排水系统的坡度可以非常有效地控制水位深度;在渗透系数减小到一定程度后,会导致水位的大幅增加.

[1] MCENROE B M. Maximum saturated depth over landfill liners [J]. Journal of Environmental Engineering, ASCE, 1993, 119(2): 262-270.
[2] GIROUD J P, GROSS B A, DARASSE J. Flow in leachate collection layers, steadystate [R]. \
[S. l.\]: GeoSyntec Consultants, 1992.
[3] QIAN X D, GRAY D H, KOERNER R M. Estimation of maximum liquid head over landfill barriers [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(5): 488-497.
[4] EPA/530/SW869C, Landfill and surface impoundments evaluation [S]. Washington: U.S. Environmental Protection Agency, 1983.
[5] MCENROE B M. Steady drainage of landfill covers and bottom liners [J]. Journal of Environmental Engineering, ASCE, 1989, 115(6): 1114-1122.
[6] KORFIATIS G P, DEMETRACOPOULS A C. Flow characteristics of landfill leachate collection systems and liners [J]. Journal of Environmental Engineering, ASCE, 1986, 112(3): 538-550.
[7] 柯瀚,黄传兵,陈云敏.成层介质中填埋场渗滤液的最大饱和深度\
[J\].岩土工程学报,2005,27(10): 1194-1197.
KE Han, HUANG Chuanbing, CHEN Yunmin. Maximum saturated depth of landfill leachate in layered drainage media [J]. Chinese Jounal of Geotechnical Engineering, 2005, 27(10): 1194-1197.
[8] CHAPMAN T G. Modelling groundwater flow over sloping beds [J]. Water Resources Research, 1980, 16(6): 1114-1118.
[9] HARR M E. Groundwater and seepage [M]. New York: McGrawHill, 1962: 210-226.
[10] KORFIATIS G P, SEIDAS L, DEMETRACOPOULS A C. Experimentalmathematical investigations of the hydraulics of landfill leachage collection systems [C]∥3rd International Conference: Computational Methods and Experimental Measurements. Greece: Porto Carras, 1986.
[11] DEMETRACOPOULS A C. Overview of landfill bottom liner hydraulics [J]. Water Resources Bulletin, 1988, 24(1): 49-56.
[12] SCHROEDER P R, DOZIER T S, ZAPPI P A, et al. EPA/600/R94/168b, The hydrologic evaluation of landfill performance (HELP) model: engineering documentation for version 3 [R]. Washington: U.S. Environmental Protection Agency Office of Research and Development, 1994.

[1] HU An-feng,SUN Bo,XIE Kang-he,JIA Yu-shuai. An analysis of cumulative settlement of soft soil under traffic loading[J]. J4, 2013, 47(11): 1939-1944.
[2] ZHANG Zhong-miao, FANG Kai, LIU Xing-wang, LIN Cun-gang. Surrounding ground settlement control of special double-row
structure supported foundation pit
[J]. J4, 2012, 46(7): 1275-1280.