Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (5): 896-904    DOI: 10.3785/j.issn.1008-973X.2021.05.010
    
Monitoring method for machining tool wear based on machine vision
Xun CHENG(),Jian-bo YU*()
School of Mechanical Engineering, Tongji University, Shanghai 201804, China
Download: HTML     PDF(1819KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A set of tool wear monitoring methods based on machine vision was proposed aiming at the wear form of twist drill, in order to monitor the wear conditon of the tool during the machining process. A non-local mean denoising method was proposed based on integral image and Turky bi-weight kernel function according to the gray distribution of worn tool images. The single and double threshold Otsu methods were proposed to obtain the gray interval of the worn area to adaptively enhance the image. A method of extracting local extreme points of wear regions based on morphological reconstruction was proposed to effectively complete the detection of wear regions and boundary extraction. Experimental results show that the monitoring method of tool wear can be effectively implemented in the monitoring of twist drill wear. And it is proved that the proposed method has higher detection accuracy and efficiency and it can extract tool wear more accurately than other methods. It helps to realize the monitoring of tool wear and automatic monitoring of the processing process, and achieve the purpose of reducing labor costs and product failure rate.



Key wordstool wear      machine vision      image denoising      image enhancement      edge detection     
Received: 27 March 2020      Published: 10 June 2021
CLC:  TH 164  
Fund:  国家自然科学基金资助项目(71777173);上海科委“科技创新行动计划”高新技术领域资助项目(19511106303);装备预先研究领域基金项目(61400020119)
Corresponding Authors: Jian-bo YU     E-mail: 15801789097@163.com;jbyu@tongji.edu.cn
Cite this article:

Xun CHENG,Jian-bo YU. Monitoring method for machining tool wear based on machine vision. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 896-904.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.05.010     OR     http://www.zjujournals.com/eng/Y2021/V55/I5/896


基于机器视觉的加工刀具磨损监测方法

为了对加工过程中刀具的磨损状态进行监测,针对麻花钻的磨损形式,提出基于机器视觉的加工刀具磨损监测方法. 根据磨损刀具图像的灰度分布特点,提出基于积分图加速和Turky bi-weight核函数的非局部均值去噪方法;采用单、双阈值大津法获取磨损区域的灰度区间,实现对图像的自适应对比度增强;提出基于形态学重构方法的磨损区域局部极值点提取方法,有效完成对磨损区域的检测和边界提取. 该刀具磨损检测方法成功应用于麻花钻头磨损状态的监测过程,实验结果表明,相较于目前已有的机器视觉监测方法,所提出的方法具有更高的检测精度和效率,准确地提取磨损轮廓,从而有效实现对刀具磨损状态的监测和自动化监控加工过程,达到降低人工成本和产品不合格率的目的.


关键词: 刀具磨损,  机器视觉,  图像去噪,  图像增强,  边缘提取 
Fig.1 Method for monitoring wear of machining tools based on machine vision
Fig.2 Implementation process of NLM
Fig.3 Integral image calculation process
Fig.4 Diagram of morphological reconstruction for local extremum
Fig.5 Overall structure of twist drill
Fig.6 Diagram of devices for experimental machining and image processing
Fig.7 Physical picture of experimental machining and image processing device
参数 取值 参数 取值
相机型号 acA2500-60um 感光芯片 PYTHON 5000
感光芯片
供应商
ON Semiconductor 靶面尺寸 1
快门 Global Shutter 感光芯片尺寸 12.4 mm×9.8 mm
感光芯片
类型
CMOS 分辨率 5 MP
水平/垂直
分辨率
2590 px×2048 px 帧速率 60 fps
水平/垂直
像素尺寸
4.8 μm×4.8 μm 接口 USB 3.0
黑白/彩色 Mono ? ?
Tab.1 Camera parameters
参数 取值
镜头型号 M0824-MPW2
靶面尺寸 2/3″
焦距/mm 8
最大成像尺寸/mm 8.8 × 6.6(Φ 11)
光圈范围(F-Stop) F2.4~F16.0
最小物距(M.O.D)/m 0.05
Tab.2 Lens parameters
Fig.8 Tool wear image process
Fig.9 Binary extraction and location of wear boundary
去噪算法 去噪时间/s PSNR SNR SSIM 原图 处理后图像
尺寸: 160×160 尺寸: 320×320
NLM 13.08 53.78 75.5714 16.2157 0.4969
NFNLM 0.23 4.51 75.6511 16.2954 0.4981
Tab.3 Comparison of calculation speed and noise filtering results of NLM and NFNLM
Fig.10 Comparison of boundary extraction between morphological reconstruction and other segmentation methods
原始图像 边界图像 重合图像 磨损最大宽度像素数
8.1
13.8
16.2
18.0
19.3
Tab.4 Wear area detection
测量次数 钻头直径像素/像素 像素当量/μm
1 140.8 42.3
2 139.7 42.6
3 139.4 42.7
4 141.8 42.0
5 138.2 43.1
平均值 140.0 42.5
Tab.5 Measurement results of pixel equivalent
实际像素
数目
实际宽度/
mm
估计像素
数目
估计宽度/
mm
误差百分比/
%
8.1 0.344 8.1 0.344 0
14.8 0.629 13.8 0.587 6.7
16.8 0.714 16.2 0.689 3.5
18.8 0.799 18.0 0.765 4.3
19.6 0.833 19.3 0.820 1.6
Tab.6 Twist drill wear width measurement
[1]   陈雷明, 杨润泽, 张治 刀具检测方法综述[J]. 机械制造与自动化, 2011, 40 (1): 49- 50
CHEN Lei-ming, YANG Run-ze, ZHANG Zhi Summary of the tool monitoring methods[J]. Machine Building and Automation, 2011, 40 (1): 49- 50
doi: 10.3969/j.issn.1671-5276.2011.01.016
[2]   赵帅, 黄亦翔, 王浩任, 等 基于随机森林与主成分分析的刀具磨损评估[J]. 机械工程学报, 2017, 53 (21): 181- 189
ZHAO Shuai, HUANG Yi-xiang, WANG Hao-ren, et al Random forest and principle components analysis based on health assessment methodology for tool wear[J]. Journal of Mechanical Engineering, 2017, 53 (21): 181- 189
doi: 10.3901/JME.2017.21.181
[3]   刘佳佳, 姜兴刚, 张德远 钛合金高速旋转超声椭圆振动侧铣削切屑特征和刀具磨损研究[J]. 机械工程学报, 2019, 55 (19): 186- 194
LIU Jia-jia, JIANG Xing-gang, ZHANG De-yuan Research on the characteristics of chips and tool flank wear in high-speed rotary ultrasonic elliptical machining for side milling of Ti-6Al-4V[J]. Journal of Mechanical Engineering, 2019, 55 (19): 186- 194
doi: 10.3901/JME.2019.19.186
[4]   杨建国, 肖蓉, 李蓓智, 等 基于机器视觉的刀具磨损检测技术[J]. 东华大学学报: 自然科学版, 2012, 38 (5): 505- 508
YANG Jian-guo, XIAO Rong, LI Bei-zhi, et al Tool wear detection based on machine vision[J]. Journal of Donghua University: Natural Science, 2012, 38 (5): 505- 508
[5]   贾冰慧. 基于机器视觉的刀具状态在机检测关键技术研究[D]. 广州: 华南理工大学, 2014.
JIA Bing-hui. Key technology research of tool condition detection on-machine based on machine vision[D]. Guangzhou: South China University of Technology, 2014.
[6]   廖玉松, 韩江 基于像素分布特征的图像去噪法在刀具磨损检测中的应用[J]. 机械设计, 2015, 32 (6): 93- 98
LIAO Yu-song, HAN Jiang Application of image denoising method based on pixel-distribution on tool wear detection[J]. Journal of Machine Design, 2015, 32 (6): 93- 98
[7]   吴一全, 殷骏 粒子群优化的Contourlet域数字全息再现像增强[J]. 中国激光, 2013, 40 (8): 190- 196
WU Yi-quan, YIN Jun Contourlet domain digital holographic image enhancement based on particle swarm optimization[J]. Chinese Journal of Lasers, 2013, 40 (8): 190- 196
[8]   尹士畅, 喻松林 基于小波变换和直方图均衡的红外图像增强[J]. 激光与红外, 2013, 43 (2): 225- 228
YIN Shi-chang, YU Song-lin Infrared image enhancement algorithm based on wavelet transform and histogram equalization[J]. Laser and Infrared, 2013, 43 (2): 225- 228
doi: 10.3969/j.issn.1001-5078.2013.02.024
[9]   何翔, 任小洪 基于数字图像的刀具磨损状态检测技术[J]. 机床与液压, 2016, 44 (3): 125- 128
HE Xiang, REN Xiao-hong Tool wear state detection technology based on digital image[J]. Machine Tool and Hydraulics, 2016, 44 (3): 125- 128
doi: 10.3969/j.issn.1001-3881.2016.03.031
[10]   HOU Q, SUN J, HUANG P A novel algorithm for tool wear online inspection based on machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101 (9?12): 2415- 2423
doi: 10.1007/s00170-018-3080-9
[11]   MOOK W K, SHAHABI H H, RATNAM M M Measurement of nose radius wear in turning tools from a single 2D image using machine vision[J]. The International Journal of Advanced Manufacturing Technology, 2009, 43 (3/4): 217- 225
doi: 10.1007/s00170-008-1712-1
[12]   HUSSAIN S, CHEN X Remote milling tool-wear monitoring and direct wear features extraction by image processing[J]. International Journal of Internet Manufacturing and Services, 2008, 1 (3): 246- 261
doi: 10.1504/IJIMS.2008.021197
[13]   ZHANG C, ZHANG J On-line tool wear measurement for ball-end milling cutter based on machine vision[J]. Computers in Industry, 2013, 64 (6): 708- 719
doi: 10.1016/j.compind.2013.03.010
[14]   ZHU K, YU X The monitoring of micro milling tool wear conditions by wear area estimation[J]. Mechanical Systems and Signal Processing, 2017, 93: 80- 91
doi: 10.1016/j.ymssp.2017.02.004
[15]   LI L, AN Q An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis[J]. Measurement, 2016, 79: 44- 52
doi: 10.1016/j.measurement.2015.10.029
[16]   SCHMITT R, CAI Y, PAVIM A Machine vision system for inspecting flank wear on cutting tools[J]. International Journal on Control System and Instrumentation, 2012, 3 (1): 37- 31
[17]   BUADES A, COLL B, MOREL J M Non-local means denoising[J]. Image Processing On Line, 2011, 1: 208- 212
doi: 10.5201/ipol.2011.bcm_nlm
[18]   VIOLA P A, JONES M J. Rapid object detection using a boosted cascade of simple features[C]// Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai: IEEE, 2001.
[19]   TIAN J, YU W Y, XIE S L. On the kernel function selection of nonlocal filtering for image denoising[C]// 2008 International Conference on Machine Learning and Cybernetics. Kunming: IEEE, 2008, 5: 2964-2969.
[20]   OTSU N A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9 (1): 62- 66
doi: 10.1109/TSMC.1979.4310076
[21]   GONG L X Crop image recognition based on ComVI and double threshold OTSU algorithm[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32 (4): 363- 368
[22]   VINCENT L. Morphological grayscale reconstruction: definition, efficient algorithm and applications in image analysis [C]// Champaign: CVPR, 1992: 633-635.
[23]   马利杰, 田泽正, 王贵成 轴向振动钻削中麻花钻的失效形式分析[J]. 制造技术与机床, 2008, (11): 105- 108
MA Li-jie, TIAN Ze-zheng, WANG Gui-cheng Analysis on failure from of twist drill in axial vibration drilling[J]. Manufacturing Technology and Machine Tool, 2008, (11): 105- 108
doi: 10.3969/j.issn.1005-2402.2008.11.035
[1] Zi-ye YONG,Ji-chang GUO,Chong-yi LI. weakly supervised underwater image enhancement algorithm incorporating attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 555-562.
[2] Jun DU,Chen MA,Zheng-ying WEI. Dynamic response of surface morphology of aluminum (Al) deposited layers in wire and arc additive manufacturing based on visual sensing[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1481-1489.
[3] Zhuang KANG,Jie YANG,Hao-qi GUO. Automatic garbage classification system based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1272-1280.
[4] Zhen JIA,Wen-de DONG,Gui-li XU,Shi-peng ZHU. Image Poisson denoising algorithm based on Markov fields of experts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1164-1169.
[5] Hai-jin WANG,Zong-yu YIN,Zhen-zheng KE,Ying-jie GUO,Hui-yue DONG. Wear monitoring of helical milling tool based on one-dimensional convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 931-939.
[6] Wan-liang WANG,Xiao-han YANG,Yan-wei ZHAO,Nan GAO,Chuang LV,Zhao-juan ZHANG. Image enhancement algorithm with convolutional auto-encoder network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1728-1740.
[7] BI Yun bo, XU Chao, Fan Xin tian, YAN Wei miao. Method of countersink perpendicularity detection using vision measurement[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 312-318.
[8] LIU Ya nan, NI He peng, ZHANG Cheng rui WANG Yun fei; SUN Hao chun. PC-based open control platform design of integration of machine vision and motion control[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1381-1386.
[9] YE Xiao-wei, ZHANG Xiao-ming, NI Yi-qing, WONG Kai-yuen, FAN Ke-qing. Bridge deflection measurement method based on machine vision technology[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 813-819.
[10] XU Song,SUN Xiu-xia,HE Yan. Iterative method of camera distortion calibration utilizing lines-imaging characteristics[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 404-413.
[11] GONG Xiao-hong, ZHENG Yin-fei, QIN Jia-le, ZHOU Hao.
Multiplicative gradient based edge detection method for medical ultrasound image
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1871-1878.
[12] CHEN Xiao-hong,WANG Wei-dong. A HDTV video de-noising algorithm based on spatial-temporal filtering[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 853-859.
[13] LIU Tao, ZHAO Ju-feng, XU Zhi-hai, FENG Hua-jun,CHEN Hui-fang. Enhancement algorithm for infrared images based on Kalman filter[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1534-1539.
[14] LV Gu-lai,LI Jian-ping,LI Qiang,YU Li-xing,ZHU Song-ming,LOU Jian-zhong. Method for rootstock position recognition based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(10): 1766-1770.
[15] ZHANG Zan-Chao, JIA Shun-Ren. Automatic urinary image processing[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 832-838.