Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (12): 2271-2279    DOI: 10.3785/j.issn.1008-973X.2019.12.003
Mechanical and Energy Engineering     
Nonlinear predictive control of power split hybrid electric vehicle with optimal system efficiency
De-hua SHI1,2(),Ying-feng CAI1,2,*(),Shao-hua WANG2,Long CHEN1,2,Zhen ZHU1,2,Li-xin GAO3
1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
2. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
3. Chery New Energy Co. Ltd, Wuhu 241003, China
Download: HTML     PDF(1314KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A dynamical model of the power split powertrain was established to accurately describe the torque and speed coupling relations within the system, aiming at a novel power split hybrid electric vehicle (HEV) with dual planetary gear sets. By means of building the efficiency model of different components, the system operation efficiency under different modes was analyzed. Then, the control framework of the proposed vehicle was designed, and the optimal control problem based on model predictive control scheme was constructed. The one-step Markov chain model was applied to predict the required driver torque and vehicle velocity. The optimal problem in the prediction horizon was converted to nonlinear programming problem, and sequential quadratic programming (SQP) was applied to derive the optimal control sequence. Simulation results demonstrate that the proposed strategy can maintain the battery charging sustainability. When the initial battery state of charge (SOC) is 0.50, 0.55 and 0.60, respectively, compared with the nonlinear predictive control with the engine fuel consumption as objective, the vehicle equivalent fuel economy is improved by 7.17%、5.73% and 10.11%, respectively, with the proposed strategy under urban dynamometer driving schedule (UDDS). Thus, the feasibility and superiority of the controller are validated.



Key wordshybrid electric system      power split      optimal system efficiency      predictive control      nonlinear programming     
Received: 07 January 2019      Published: 17 December 2019
CLC:  U 463.2  
Corresponding Authors: Ying-feng CAI     E-mail: dhshi@ujs.edu.cn;caicaixiao0304@126.com
Cite this article:

De-hua SHI,Ying-feng CAI,Shao-hua WANG,Long CHEN,Zhen ZHU,Li-xin GAO. Nonlinear predictive control of power split hybrid electric vehicle with optimal system efficiency. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2271-2279.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.12.003     OR     http://www.zjujournals.com/eng/Y2019/V53/I12/2271


系统效率最优的功率分流式混合动力汽车非线性预测控制

针对一种基于双行星排构型的功率分流式混合动力汽车,建立系统动态模型,准确描述其转速转矩耦合关系,通过建立各部件的效率模型,分析不同模式下系统的工作效率. 设计控制器结构框架,以系统工作效率和电池充放电平衡为目标,构建基于模型预测控制的优化问题,采用一步马尔科夫链模型预测驾驶员需求转矩及车速,将有限时域内的优化问题转化为非线性规划问题,基于序列二次规划算法实现优化求解. 仿真研究表明,基于系统效率最优的预测控制器能够维持电池的充放电平衡,在美国城市驾驶循环(UDDS)下,当电池初始电池荷电状态(SOC)分别为0.50、0.55和0.60时,相较于以发动机燃油消耗最优为目标,车辆等效燃油经济性分别提高了7.17%、5.73%和10.11%,验证了控制器的有效性和优越性.


关键词: 混合动力系统,  功率分流,  系统效率最优,  预测控制,  非线性规划 
Fig.1 Configuration of power split hybrid system
参数 含义 数值 单位
mv 整车整备质量 1 398 kg
Rw 车轮半径 0.287 m
ρair 空气密度 1.23 g/m3
Cd 空气阻力系数 0.3 ?
Af 车辆迎风面积 1.746 m2
id 主减速比 3.93 ?
K1 前行星排特征参数 2.11 ?
K2 后行星排特征参数 2.11 ?
$\omega^{\rm{E}}_{\rm{max}} $ 发动机最大转速 4 700 r/min
$P^{\rm{E}}_{\rm{max}} $ 发动机峰值功率 54 kW
$\omega^{\rm{G}}_{\rm{max}} $ 电机MG1最大转速 8 000 r/min
$P^{\rm{G}}_{\rm{max}} $ 电机MG1峰值功率 15 kW
$\omega^{\rm{M}}_{\rm{max}} $ 电机MG2最大转速 15 000 r/min
$P^{\rm{M}}_{\rm{max}} $ 电机MG2峰值功率 30 kW
Tab.1 Specifications of hybrid electric vehicle
Fig.2 Lever model of power coupling device
Fig.3 Battery efficiency with temperature of 25 °C
Fig.4 Topology of predictive controller with optimal system efficiency
Fig.5 Urban dynamometer driving schedule (UDDS) cycle
Fig.6 Transition probability of required driver torque under UDDS cycle
Fig.7 Variation of battery SOC with different control strategies
Fig.8 Output power of the engine and electric machines with different control strategies
Fig.9 Distribution of engine operation points with different control strategies
socini 控制策略 socfin mf / L mequ / L λimp/%
0.50 油耗最优 0.545 3.00 3.21 7.17
效率最优 0.556 3.23 2.98
0.55 油耗最优 0.550 2.79 2.79 5.73
效率最优 0.557 2.92 2.63
0.60 油耗最优 0.545 2.46 2.67 10.11
效率最优 0.556 2.70 2.40
Tab.2 Fuel economy of the vehicle for different initial SOC values under UDDS
[1]   ENANG W P, BANNISTER C Modelling and control of hybrid electric vehicles (a comprehensive review)[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 1210- 1239
doi: 10.1016/j.rser.2017.01.075
[2]   WANG F, ZHANG J, XU X, et al New method for power allocation of multi-power sources considering speed-up transient vibration of planetary power-split HEVs driveline system[J]. Mechanical Systems and Signal Processing, 2019, 128: 1- 18
doi: 10.1016/j.ymssp.2019.03.027
[3]   SHI D H, PISU P, CHEN L, et al Control design and fuel economy investigation of power split HEV with energy regeneration of suspension[J]. Applied Energy, 2016, 182: 576- 589
doi: 10.1016/j.apenergy.2016.08.034
[4]   江冬冬, 李道飞, 俞小莉 双轴驱动混合动力车辆能量管理策略[J]. 浙江大学学报: 工学版, 2016, 50 (12): 2245- 2253
JIANG Dong-dong, LI Dao-fei, YU Xiao-li Energy management strategy of dual drive hybrid electric vehicle[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (12): 2245- 2253
[5]   YANG Y, PEI H, HU X S, et al Fuel economy optimization of power split hybrid vehicles: A rapid dynamic programming approach[J]. Energy, 2019, 166: 929- 938
doi: 10.1016/j.energy.2018.10.149
[6]   XIA C Y, ZHANG C Real-time optimization power-split strategy for hybrid electric vehicles[J]. Science China Technological Sciences, 2016, 59 (5): 814- 824
doi: 10.1007/s11431-015-5998-6
[7]   HUANG Y, WANG H, KHAJEPOUR A, et al Model predictive control power management strategies for HEVs: a review[J]. Journal of Power Sources, 2017, 341: 91- 106
doi: 10.1016/j.jpowsour.2016.11.106
[8]   KIM N, CHA S, PENG H Optimal control of hybrid electric vehicles based on Pontryagin's minimum principle[J]. IEEE Transactions on Control Systems Technology, 2011, 19 (5): 1279- 1287
doi: 10.1109/TCST.2010.2061232
[9]   SHABBIR W, EVANGELOU S A Real-time control strategy to maximize hybrid electric vehicle powertrain efficiency[J]. Applied Energy, 2014, 135 (C): 512- 522
[10]   SEZER V, GOKASAN M, BOGOSYAN S A novel ECMS and combined cost map approach for high-efficiency series hybrid electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2011, 60 (8): 3557- 3570
doi: 10.1109/TVT.2011.2166981
[11]   秦大同, 林毓培, 刘星源, 等 基于系统效率的PHEV动力与控制参数优化[J]. 湖南大学学报: 自然科学版, 2018, 45 (2): 62- 68
QIN Da-tong, LIN Yu-pei, LIU Xing-yuan, et al Optimization of power and control parameters for PHEV based on system efficiency[J]. Journal of Hunan University: Natural Sciences, 2018, 45 (2): 62- 68
[12]   连静, 韩虎, 李琳辉, 等 基于传动系统效率最优的混合动力汽车控制策略研究[J]. 大连理工大学学报, 2013, 53 (5): 666- 670
LIAN Jing, HAN Hu, LI Lin-hui, et al Research on HEV control strategy based on optimal efficiency of drive syste,[J]. Journal of Dalian University of Technology, 2013, 53 (5): 666- 670
doi: 10.7511/dllgxb201305008
[13]   林歆悠, 吴超宇, 林海波 基于遗传算法系统效率优化的PHEV电量保持模式控制策略[J]. 中国公路学报, 2018, 31 (5): 174- 182
LIN Xin-you, WU Chao-yu, LIN Hai-bo Control strayegy of PHEV charg-sustaining mode based on GA system efficiency optimization[J]. China Journal of Highway and Transport, 2018, 31 (5): 174- 182
doi: 10.3969/j.issn.1001-7372.2018.05.021
[14]   汪少华, 李佳芯, 施德华, 等 基于传动效率最优的功率分流式混合动力汽车控制[J]. 江苏大学学报: 自然科学版, 2018, 39 (6): 621- 627
WANG Shao-hua, LI Jia-xin, SHI De-hua, et al Control strategy of power split HEV based on optimal transmission efficiency[J]. Journal of Jiangsu University: Natural Science Editions, 2018, 39 (6): 621- 627
[15]   王庆年, 王文, 王鹏宇, 等 基于瞬时效率的功率分流式混合动力汽车最佳分离因子的确定[J]. 吉林大学学报: 工学版, 2013, 43 (5): 1160- 1164
WANG Qing-nian, WANG Wen, WANG Peng-yu, et al Determination of the best seperation factor for power-split hybrid electric vehicle based on instantaneous efficiency[J]. Journal of Jilin University: Engineering and Technology Edition, 2013, 43 (5): 1160- 1164
[16]   郭金刚, 董昊轩, 盛伟辉, 等 电动汽车再生制动能量回收最优控制策略[J]. 江苏大学学报: 自然科学版, 2018, 39 (2): 132- 138
GUO Jin-gang, DONG Hao-xuan, SHENG Wei-hui, et al Optimum control strategy of regenerative braking energy for electric vehicle[J]. Journal of Jiangsu University: Natural Science Editions, 2018, 39 (2): 132- 138
[17]   SHI D H, WANG S H, PISU P, et al Modeling and optimal energy management of a power split hybrid electric vehicle[J]. Science China Technological Sciences, 2017, 60 (5): 713- 725
doi: 10.1007/s11431-016-0452-8
[18]   SUN C, HU X S, MOURA S J, et al Velocity predictors for predictive energy management in hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2015, 23 (3): 1197- 1204
doi: 10.1109/TCST.2014.2359176
[19]   石丽建, 汤方平, 谢荣盛, 等 轮毂比对轴流式叶轮水力性能的影响[J]. 排灌机械工程学报, 2016, 34 (12): 1045- 1050
SHI Li-jian, TANG Fang-ping, XIE Rong-sheng, et al Effects of hub/tip ratio on hydraulic performance of axial-flow pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34 (12): 1045- 1050
doi: 10.3969/j.issn.1674-8530.16.0011
[1] Dong-dong JIANG,Dao-fei LI,Xiao-li YU. Model predictive control energy management based ondriver demand torque prediction[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1325-1334.
[2] Xiao-hua ZENG,Bing-bing DONG,Guang-han LI,Da-feng SONG. Fuel-saving factors for hybrid electric system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 645-653.
[3] Jia-tao DING,Jie HE,Lin-zhi LI,Xiao-hui XIAO. Real-time walking pattern optimization for humanoid robot based on model predictive control[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1843-1851.
[4] ZHENG Peng-yuan, WANG Zhen-zhen, XIANG Zhen-dong, FENG Dong-han. Mixed multi-step feedback model predictive control for linear varying systems with measurable parameters[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 703-709.
[5] YANG Qing-fang, ZHAO Xiao-hui, ZHENG Li-li, ZHANG Wei. Signal timing method for roundabouts based on model predictive control[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 117-124.
[6] CHU Liang, LI Tian-jiao, SUN Cheng-wei. Research on adaptive cruise control strategy for electric vehicle based on optimization of regenerative braking[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1596-1602.
[7] LI Guo-fei, TENG Qing-fang, WANG Chuan-lu, ZHANG Ya-qin. FCS-MPC strategy with sliding mode control for PMSM systems driven by four-switch inverters[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 620-627.
[8] ZHANG Ming hui, YANG Jia qiang, CHEN Lei, LOU Jia yu. Current predictive control method based on extended state observer for permanent magnetic synchronous motor[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1387-1392.
[9] WANG Xuan, TAO Jian feng, ZHANG Feng rong, WU Ya jin, LIU Cheng liang. Precision position control of pump controlled asymmetric cylinder[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 597-602.
[10] JIN Xin, LIANG Jun. Multivariable offset free model predictive control in dynamic PLS framework[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 750-758.
[11] SUN Yue, ZHAO Zhi-bin, SU Yu-gang, TANG Chun-sen. Nonlinear programming research on contactless power transfer
system parameters
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(2): 353-360.
[12] LI Li-juan, XIONG Lu, LIU Jun, XU Ou-guan. Multi-model predictive control based on AP-LSSVM[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1741-1746.
[13] LI Qi-an, JIN Xin. Approximate decoupling multivariable generalized predictive control of diagonal CARIMA model[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1764-1769.
[14] ZHENG Wei-wei, JIANG Shu-hang, CHEN Wei-wei, GU Jin-hui, HAO Yin-lei. Fabrication and characterization glass-based integrated
optical power splitter
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1194-1197.
[15] FU Xiao, DAI Peng, WU Xiao-jie, LIU Xiang-chao. Model predictive control of electrical excited synchronous machine[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 815-817.