Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (4): 645-653    DOI: 10.3785/j.issn.1008-973X.2019.04.005
    
Fuel-saving factors for hybrid electric system
Xiao-hua ZENG(),Bing-bing DONG,Guang-han LI,Da-feng SONG*()
State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China
Download: HTML     PDF(1020KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The definition of average integrated energy transfer efficiency and the theoretical calculation model of fuel consumption were proposed by analyzing the hybrid system internal energy flow aiming at hybrid electric system. Some fuel-saving factors were determined combined with the basic fuel-saving ways of hybrid electric system and calculation model, and the calculation model of fuel-saving was deduced. A parallel hybrid electric system based on CVT was taken as the research object in order to verify the correctness and practicability of the proposed calculation model. A global optimization algorithm based on dynamic programming method was proposed to analyze the fuel-saving potential. Each fuel-saving factor mentioned above was analyzed through quantitative study to explicit the contribution to the system fuel-saving rate. The limit fuel consumption was calculated considering the maximum efficiency of each component of the hybrid system based on the detailed analysis and demonstration of fuel-saving factors.



Key wordshybrid electric system      dynamic programming      theoretical fuel consumption model      fuel-saving analysis     
Received: 21 March 2018      Published: 28 March 2019
CLC:  U 469  
Corresponding Authors: Da-feng SONG     E-mail: zeng.xiaohua@126.com;songdf@126.com
Cite this article:

Xiao-hua ZENG,Bing-bing DONG,Guang-han LI,Da-feng SONG. Fuel-saving factors for hybrid electric system. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 645-653.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.04.005     OR     http://www.zjujournals.com/eng/Y2019/V53/I4/645


混合动力系统节油影响因素

针对混合动力系统,在分析系统内部能量流的基础上,提出平均综合能量传递效率定义和系统的理论油耗计算模型. 结合混合动力系统的基本节油途径和计算模型,确定影响系统节油的因素并推导出各因素变化后的节油量与节油率计算模型. 为了验证提出的计算模型的正确性与实用性,以某CVT并联混合动力系统为研究对象,采用基于动态规划方法的全局优化算法,分析混合动力系统的节油潜力,对前述的各节油因素进行理论分析和定量研究,明确各因素对系统节油率的贡献度;在节油影响因素细节分析论证的基础上,考虑CVT并联混合动力系统各部件未来可实现的效率最大化,计算该系统的极限油耗.


关键词: 混合动力系统,  动态规划,  理论油耗模型,  节油分析 
Fig.1 Energy flow in hybrid system
Fig.2 Configuration scheme of power system
参数 参数值 参数 参数值
m/kg 1 629 Wmm/(r·min?1 6 000
r/m 0.341 Pmm/kW 21
A/m2 2.543 Tmm/(N·m) 133
Cd 0.384 i0 6.08
Wem/(r·min?1 6 000 ig 0.4~2.32
Pem/kW 80 BatE/(kW·h) 1.728
Tem/(N·m) 142 Cbat/(A·h) 6
Tab.1 Basic parameters of vehicle and components
Fig.3 Engine universal characteristics curve
Fig.4 Motor efficiency curve
Fig.5 Battery internal resistance model
Fig.6 SOC under NEDC
Fig.7 Torque of power sources under NEDC
参数 参数值 参数 参数值
SOCMini/SOCend 0.75/0.738 4 ${b_{{\rm{e, avg}}}}$/(g·kW?1·h?1 274.756
${E_{\rm{w}}}$/kJ 6 560.127 ${f_{\rm{s}}}$/(L·(100 km)?1 6.407 9
${E_{{\rm{reg}}}}$/kJ 1 077.138 ${f_{\rm{e}}}$/(L·(100 km)?1 6.407 4
${\eta _{{\rm{tr}}}}$ 80.84% $\sigma $/% 0.007 6
Tab.2 Fuel consumption of dynamic programming algorithm simulation and calculation
项目 ${E_{{\rm{reg}}}}$/kJ $\Delta{f_{\rm{s}}}$/(L·(100 km)?1 $\gamma $/% ${\delta _{{\rm{fs}}}}$/% ${\delta _{{\rm{fe}}}}$/% $\sigma $/%
项目1 0 ? 0 ? ? ?
项目2 1 077.14 0.972 1 16.4 13.1 13.4 2.2
项目3 1 153.83 1.015 6 17.6 13.8 14.2 2.8
项目4 1 223.83 1.049 1 18.6 14.6 15.0 2.7
Tab.3 Fuel saving effect of regenerative braking
项目 ${b_{{\rm{e, avg}}}}$/(g·kW?1·h?1 ${f_{\rm{s}}}$/(L·(100 km)?1 $\Delta {f_{\rm{s}}}$/(L·(100 km)?1 ${\delta _{{\rm{fs}}}}$/% ${\delta _{{\rm{fe}}}}$/% $\sigma $/%
项目1 275 6.407 9 ? ? ? ?
项目2 270 6.297 0 0.110 9 1.49 1.50 1.03
项目3 265 6.180 3 0.116 7 1.59 1.61 0.94
项目4 260 6.063 7 0.116 6 1.62 1.64 1.03
Tab.4 Fuel saving effect of engine fuel consumption rate
项目 $\eta $/% $\Delta {f_{\rm{s}}}$/(L·(100 km)?1 $\Delta {\eta _{{\rm{tr}}}}$/% ${\delta _{{\rm{fs}}}}$/% ${\delta _{{\rm{fe}}}}$/% $\sigma $/%
项目1 84.3 ? ? ? ? ?
项目2 85.3 0.077 5 1.11 1.08 1.10 1.82
项目3 86.3 0.086 1 1.14 1.16 1.14 1.72
项目4 87.3 0.084 6 1.13 1.15 1.12 3.06
Tab.5 Fuel saving effect of mechanical transmission efficiency
项目 $\eta {}_{\rm{m}}$/% $\Delta {f_{\rm{s}}}$/(L·(100 km)?1 $\Delta {\eta _{{\rm{tr}}}}$/% ${\delta _{{\rm{fs}}}}$/% ${\delta _{{\rm{fe}}}}$/% $\sigma $/%
项目1 90 ? ? ? ? ?
项目2 91 0.019 8 0.26 0.26 0.27 3.70
项目3 92 0.021 3 0.27 0.28 0.27 4.10
项目4 93 0.022 5 0.27 0.28 0.27 3.06
Tab.6 Fuel saving effect of motor efficiency
$\eta {}_{\rm{m}}$% ${\eta _{{\rm{tr}}}}$/% ${\delta _{{\rm{fe\_\eta }}}}$/%
无RGB 有RGB 无RGB 有RGB 再生制动贡献值
90 80.17 80.94 ? ? ?
91 80.38 81.02 0.26 0.30 0.04
92 80.60 81.11 0.27 0.31 0.04
93 80.82 81.20 0.27 0.32 0.05
Tab.7 Difference of fuel saving rate with or without regenerative braking (RGB)
影响因素 因变量变化 $\Delta {\eta _{{\rm{tr}}}}$/
%
${\delta _{{\rm{fe}}}}$ $\Delta {f_{\rm{e}}}$/
(L·(100 km)?1
发动机平均
燃油消耗率
每降低
5 g/kW·h
? 提升1.50% 0.11
再生制动
回收能量
能量回收率
每增加1%
? 提升0.80% 0.06
机械传动效率 每增加1% 1.13 提升1.12% 0.08
电机平均效率 每增加1% 0.27 提升0.27% 0.02
Tab.8 Fuel saving effect of each factor
项目 $\eta {}_{\rm{e}}$/% $\eta {}_{\rm{m}}$/% $\eta $/% ${E_{{\rm{reg}}}}$/ kJ ${\eta _{{\rm{tr}}}}$/% ${f_{{\rm{e\_com}}}}$/(L·(100 km)?1)
当前值 28 90 83.3 1 077.138 80.8 6.473 8
极限值 35 92 88.2 1 119.301 87.0 4.971 8
Tab.9 Limit fuel consumption of power system
项目 ${\delta _{{\rm{fe}}}}$/% $\Delta {f_{\rm{e}}}$/(L·(100 km)?1) $\Delta {f_{\rm{e}}}'$/(L·(100 km)?1) $\sigma $/%
发动机效率 13.93 1.042 0.980 5.95
再生制动
回收能量
0.52 0.039 0.038 0.56
综合能量
传递效率
7.24 0.540 0.552 2.17
耦合项 ?1.59 ?0.119 ? ?
总和 20.13 1.502 1.570 4.33
Tab.10 Contribution to fuel saving rate of each factors
[1]   胡均平, 冯东昱, 李科军 混合动力汽车动力系统优化建模仿真研究[J]. 计算机仿真, 2017, 34 (1): 143- 147
HU Jun-ping, FENG Dong-yu, LI Ke-jun Modeling and simulation of hybrid electric vehicle power system optimization[J]. Computer Simulation, 2017, 34 (1): 143- 147
[2]   彭志远, 秦大同, 段志辉, 等 新型混合动力汽车工作模式分析与参数匹配设计[J]. 中国机械工程, 2012, 23 (9): 1122- 1128
PENG Zhi-yuan, QIN Da-tong, DUAN Zhi-hui, et al Operation mode analysis and parameter matching design of a novel hybrid electric vehicle[J]. China Mechanical Engineering, 2012, 23 (9): 1122- 1128
[3]   郑永霞, 赵峰, 罗禹贡, 等 装备CVT的中度混合动力轿车驱动工况下的能量优化策略[J]. 汽车工程, 2014, 36 (1): 2- 6
ZHENG Yong-xia, ZHAO Feng, LUO Yu-gong, et al Energy optimization strategy for the mild hybrid electric vehicle with CVT under drive conditions[J]. Automotive Engineering, 2014, 36 (1): 2- 6
[4]   杨官龙, 秦大同, 刘永刚, 等 CVT插电式混合动力汽车全局优化控制策略[J]. 中南大学学报: 自然科学版, 2014, (12): 4194- 4200
YANG Guan-long, QIN Da-tong, LIU Yong-gang, et al Global optimization control strategy of CVT plug-in hybrid electric vehicle[J]. Journal of Central South University : Science and Technology, 2014, (12): 4194- 4200
[5]   WANG W, SONG R, GUO M, et al Analysis on compound-split configuration of power-split hybrid electric vehicle[J]. Mechanism and Machine Theory, 2014, 78 (8): 272- 288
[6]   江冬冬, 李道飞, 俞小莉 双轴驱动混合动力车辆能量管理策略[J]. 浙江大学学报: 工学版, 2016, 50 (12): 2245- 2253
JIANG Dong-dong, LI Dao-fei, YU Xiao-li Energy management strategy of dual drive hybrid electric vehicle[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (12): 2245- 2253
[7]   KATRA?NIK T Analytical method to evaluate fuel consumption of hybrid electric vehicles at balanced energy content of the electric storage devices[J]. Applied Energy, 2010, 87 (11): 3330- 3339
[8]   YU K, YANG H, TAN X, et al Model predictive control for hybrid electric vehicle platooning using slope information[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (7): 1894- 1909
[9]   陈雪平, 张海亮, 钟再敏, 等 插电式混合动力汽车能耗及其影响因素分析[J]. 同济大学学报: 自然科学版, 2016, 44 (11): 1749- 1754
CHEN Xue-ping, ZHANG Hai-liang, ZHONG Zai-min, et al Simulation and user factors analysis of energy consumption of plug-in hybrid electric vehicles[J]. Journal of Tongji University: Natural Science, 2016, 44 (11): 1749- 1754
[10]   彭文明, 杨慧萍, 李孟良, 等 插电式混合动力电动汽车能耗研究[J]. 武汉理工大学学报, 2013, 35 (9): 144- 148
PENG Wen-ming, YANG Hui-ping, LI Meng-liang, et al Investigation on the energy consumption of PHEV[J]. Journal of Wuhan University of Technology, 2013, 35 (9): 144- 148
[11]   CARLSON R, SHIRK M G, GELLER B M. Factors affecting the fuel consumption of plug-in hybrid electric vehicles [C] // The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle and Symposium Exhibition (EVS 25). Shenzhen: [s.n.], 2010: 1–9.
[12]   KHAYYER P, WOLLAEGER J, ONORI S, et al. Analysis of impact factors for plug-in hybrid electric vehicles energy management [C] // International IEEE Conference on Intelligent Transportation Systems. Anchorage: IEEE, 2012: 1061–1066.
[13]   曾小华, 王庆年, 李骏, 等 混合动力汽车多途径节能定量研究[J]. 汽车工程, 2007, 29 (9): 739- 744
ZENG Xiao-hua, WANG Qing-nian, LI Jun, et al A quantitative on multi-approach energy saving of HEV[J]. Automotive Engineering, 2007, 29 (9): 739- 744
[14]   KIM N, CHA S, PENG H Optimal control of hybrid electric vehicles based on Pontryagin's minimum principle[J]. IEEE Transactions on Control Systems Technology, 2011, 19 (5): 1279- 1287
[15]   巴特, 高印寒, 王庆年, 等 基于动态规划算法的并联混合动力客车控制策略优化[J]. 汽车工程, 2015, 37 (12): 1359- 1365
BA Te, GAO Yin-han, WANG Qing-nian, et al Control strategy optimation for a parallel hybrid electric bus based on dynamic programming algorithm[J]. Automotive Engineering, 2015, 37 (12): 1359- 1365
[1] De-hua SHI,Ying-feng CAI,Shao-hua WANG,Long CHEN,Zhen ZHU,Li-xin GAO. Nonlinear predictive control of power split hybrid electric vehicle with optimal system efficiency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2271-2279.
[2] Xiao-hua ZENG,Xing-qi WANG,Da-feng SONG,Nan-nan YANG,Zhen-wei WANG. Battery-health conscious energy management optimization in plug-in hybrid electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2206-2214.
[3] WANG Yuan-yuan, GUO Yan-en, SHI Guo-quan, WEI Jun-xia, XIA Shun-ren. Algorithm for seabed terrain boundary extraction based on acoustic images[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 376-383.