Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (1): 10-19    DOI: 10.3785/j.issn.1008-973X.2021.01.002
    
Experimental study on recycled brick aggregate concrete frame model
Pei GE1(),Wei HUANG1,*(),Meng LI2
1. College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2. Shanxi Provincial Natural Gas Limited Company, Xi'an 710055, China
Download: HTML     PDF(1225KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The influence of water cement mass ratio, particle size distribution, recycled brick aggregate and sand volume fraction on the compressive strength of concrete and the influence of cement sand mass ratio on the compressive strength of cement paste were analyzed through experiments. The influence of aggregate cement volume ratio, cement sand mass ratio, recycled brick aggregate and sand volume fraction on the contribution strength of concrete framework was analyzed. Results show that the compressive strength of recycled brick aggregate concrete increases with the decrease of water cement mass ratio, and the compressive strength reaches the maximum value when the aggregate size ranges from 19 to 26.5 mm. The compressive strength of concrete and the contribution strength of recycled brick aggregate framework increase with the increase of recycled brick aggregate volume fraction when the volume fraction of recycled brick aggregate is between 30% and 43.2%, and both of them increase with the increase of sand volume fraction. The compressive strength of cement paste specimen increases with the increase of cement sand mass ratio when the cement sand mass ratio is between 0.33 and 1.33. The cement sand mass ratio is highly linear to the contribution strength of recycled brick aggregate framework, and aggregate cement volume ratio is highly linear to the contribution strength of recycled brick aggregate framework when the volume fraction of recycled brick aggregate is 40% and 43.2%. The contribution strength of recycled brick aggregate framework is higher than that of concrete, mainly concentrated in the recycled brick aggregate volume fraction of 40%-43.2%, especially when the volume fraction of recycled brick aggregate is 43.2% and the volume fraction of sand is 18%-26%.



Key wordsrecycled brick aggregate concrete      frame contribution strength      aggregate cement volume ratio      cement sand mass ratio      compressive strength     
Received: 28 October 2020      Published: 05 January 2021
CLC:  TU 528  
Corresponding Authors: Wei HUANG     E-mail: 810541715@qq.com;3320194230@qq.com
Cite this article:

Pei GE,Wei HUANG,Meng LI. Experimental study on recycled brick aggregate concrete frame model. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 10-19.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.01.002     OR     http://www.zjujournals.com/eng/Y2021/V55/I1/10


再生砖骨料混凝土架构模型试验研究

通过试验研究水灰质量比、粒径级配、再生砖骨料和砂体积分数对混凝土抗压强度的影响以及灰砂质量比对水泥石抗压强度的影响,分析骨浆体积比、灰砂质量比、再生砖骨料和砂体积分数对混凝土架构贡献强度的影响. 结果表明,再生砖骨料混凝土的抗压强度随着水灰质量比的减小而增大,当骨料粒径为19~26.5 mm时抗压强度达到最大值;当再生砖骨料体积分数为30%~43.2%时,混凝土抗压强度和再生砖骨料构架贡献强度都随着再生砖骨料体积分数的增大而增大,且都随着砂体积分数的增大而增大;当灰砂质量比为0.33~1.33时,水泥砂浆试件的抗压强度随着灰砂质量比的增大而增大;当再生砖骨料体积分数为40%和43.2%时,灰砂质量比与再生砖骨料架构贡献强度以及骨浆体积比与再生砖骨料架构贡献强度均高度线性相关;再生砖骨料架构贡献强度高于混凝土强度,主要集中在再生砖骨料体积分数为40%~43.2%,特别是再生砖骨料体积分数为43.2%、砂体积分数为18%~26%.


关键词: 再生砖骨料混凝土,  架构贡献强度,  骨浆体积比,  灰砂质量比,  抗压强度 
骨料类型 ρa /(kg·m?3 ρc /(kg·m?3 T /% W /%
RBA 2100 1012 22 18.11
NA 2713 1401 10 0.22
Tab.1 Physical properties of aggregate
试件编号 骨料粒径 mc/ms mw/mc ρB /(kg·m?3) $\varphi _{\rm{B}}$
水泥 RBA NA RBA NA
H1 2.36~26.5 0.58 0.63 205 325 0 1309 561 0 0.483 0.213
H2 2.36~26.5 0.71 0.52 205 394 0 1243 558 0 0.458 0.211
H3 2.36~26.5 0.77 0.46 205 446 0 1172 577 0 0.432 0.219
H4 2.36~26.5 0.82 0.41 205 500 0 1085 610 0 0.400 0.231
H5 2.36~26.5 0.58 0.63 205 325 1013 0 561 0.483 0 0.213
H6 2.36~26.5 0.71 0.52 205 394 962 0 558 0.458 0 0.211
H7 2.36~26.5 0.77 0.46 205 446 907 0 577 0.432 0 0.219
H8 2.36~26.5 0.82 0.41 205 500 840 0 610 0.400 0 0.231
H9 19~26.5 0.77 0.46 205 446 907 0 577 0.432 0 0.219
H10 9.5~19 0.77 0.46 205 446 907 0 577 0.432 0 0.219
H11 2.36~9.5 0.77 0.46 205 446 907 0 577 0.432 0 0.219
H12 2.36~26.5 1.35 0.46 294 640 630 0 475 0.300 0 0.180
H13 2.36~26.5 1.02 0.46 272 590 630 0 577 0.300 0 0.220
H14 2.36~26.5 0.79 0.46 249 541 630 0 686 0.300 0 0.260
H15 2.36~26.5 1.22 0.46 266 578 735 0 475 0.350 0 0.180
H16 2.36~26.5 0.92 0.46 243 529 735 0 577 0.350 0 0.220
H17 2.36~26.5 0.70 0.46 220 480 735 0 686 0.350 0 0.260
H18 2.36~26.5 1.09 0.46 237 517 840 0 475 0.400 0 0.180
H19 2.36~26.5 0.81 0.46 215 467 840 0 577 0.400 0 0.220
H20 2.36~26.5 0.61 0.46 193 418 840 0 686 0.400 0 0.260
H21 2.36~26.5 1.00 0.46 220 477 907 0 475 0.432 0 0.180
H22 2.36~26.5 0.55 0.46 174 379 907 0 686 0.432 0 0.260
H23 2.36~26.5 0.83 0.46 181 394 1050 0 475 0.500 0 0.180
H24 2.36~26.5 0.60 0.46 159 344 1050 0 577 0.500 0 0.220
H25 2.36~26.5 0.43 0.46 136 295 1050 0 686 0.500 0 0.260
H26 2.36~26.5 0.70 0.46 153 332 1155 0 475 0.550 0 0.180
H27 2.36~26.5 0.49 0.46 130 283 1155 0 577 0.550 0 0.220
H28 2.36~26.5 0.34 0.46 107 234 1155 0 686 0.550 0 0.260
Tab.2 Test plan of concrete mix proportion
试件编号 mw/mc mc/ms 备注
G1 0.46 0.33 ?
G2 0.46 0.5 ?
G3 0.46 1 ?
G4 0.46 1.33 ?
G5 0.46 2 ?
G6 0.46 4 ?
G7 0.46 ? 纯水泥浆试件
Tab.3 Mix proportion scheme of cement mortar specimen
Fig.1 Compressive strength of concrete with different water cement ratio
Fig.2 Compressive strength of recycled brick aggregate concrete with different gradation
Fig.3 Influence of volume fraction of coarse and fine aggregate on compressive strength
Fig.4 Sketch map of different sand volume fraction
Fig.5 Compressive strength of specimens with different cement sand ratio
Fig.6 Contribution strength of recycled brick aggregate framework
Fig.7 Correlation diagram of aggregate contribution strength of RBA
Fig.8 Contribution strength of recycled brick aggregate framework and concrete strength
Fig.9 Correlation diagram of recycled brick aggregate contribution strength and concrete strength
[1]   郑华, 娄源峰 建筑废弃黏土砖资源化利用途径探究[J]. 河南建材, 2019, (4): 167- 169
ZHENG Hua, LOU Yuan-feng Probe into the resource utilization of abandoned clay bricks in construction[J]. Henan Building Materials, 2019, (4): 167- 169
doi: 10.3969/j.issn.1008-9772.2019.04.098
[2]   梁炯丰, 何春锋, 王长诚, 等 再生废砖粗骨料混凝土基本力学性能研究[J]. 混凝土, 2014, (4): 56- 58
LIANG Jiong-feng, HE Chun-feng, WANG Chang-cheng, et al Study on basic mechanical properties of recycled waste brick coarse aggregate concrete[J]. Concrete, 2014, (4): 56- 58
doi: 10.3969/j.issn.1002-3550.2014.04.017
[3]   YANG Jian, DU Qiang, BAO Yi-wang Concrete with recycled concrete aggregate and crushed clay bricks[J]. Construction and Building Materials, 2011, 25 (4): 1935- 1945
doi: 10.1016/j.conbuildmat.2010.11.063
[4]   赵爱华, 翟爱良, 韩健, 等 再生砖粗骨料混凝土基本力学性能试验研究[J]. 水利与建筑工程学报, 2014, 12 (3): 98- 105
ZHAO Ai-hua, ZHAI Ai-liang, HAN Jian, et al Experimental research on basic mechanical properties of recycled brick coarse aggregate concrete[J]. Journal of Water Resources and Architectural Engineering, 2014, 12 (3): 98- 105
[5]   PITARCH A M, REIG L, TOMAS A E, et al Effect of tiles, bricks and ceramic sanitary-ware recycled aggregates on structural concrete properties[J]. Waste and Biomass Valorization, 2019, 10 (6): 1779- 1793
doi: 10.1007/s12649-017-0154-0
[6]   NEPOMUCENO M C S, ISIDORO R A S, CATARINO J P G Mechanical performance evaluation of concrete made with recycled ceramic coarse aggregates from industrial brick waste[J]. Construction and Building Materials, 2018, 165: 284- 294
doi: 10.1016/j.conbuildmat.2018.01.052
[7]   STOCK A F, HANNANTT D J, WILLIAMS R I T The effect of aggregate concentration upon the strength and modulus of elasticity of concrete[J]. Magazine of Concrete Research, 1979, 32 (113): 246- 250
[8]   邢锋, 冷发光, 冯乃谦, 等 高性能混凝土骨料数量效应研究[J]. 四川建筑科学研究, 2001, 27 (2): 43- 45
XING Feng, LENG Fa-guang, FENG Nai-qian, et al The quantity effects of aggregate of high-performance- concrete[J]. Sichuan Building Science, 2001, 27 (2): 43- 45
doi: 10.3969/j.issn.1008-1933.2001.02.019
[9]   蒋正武, 孙振平, 王培铭 若干因素对多孔透水混凝土性能的影响[J]. 建筑材料学报, 2005, 8 (5): 513- 519
JIANG Zheng-wu, SUN Zhen-ping, WANG Pei-ming Effects of some factors on properties of porous pervious concrete[J]. Journal of Building Materials, 2005, 8 (5): 513- 519
doi: 10.3969/j.issn.1007-9629.2005.05.008
[10]   罗冠祥. 再生混凝土配合比设计及其强度与龄期关系的试验研究[D]. 长沙: 中南林业科技大学, 2010.
LUO Guan-xiang. Experiment research of recycled concrete proportioning design and the relationship between strength and ages [D]. Changsha: Central South University of Forestry and Technology, 2010.
[11]   景嘉骅. 混杂纤维再生砖骨料混凝土试验及性能计算方法[D]. 河南: 郑州大学, 2018.
JING Jia-hua. The experiment and performance calculation method of hybrid fibers reinforced recycled brick aggregates concrete [D]. Henan: Zhengzhou University, 2018.
[12]   顾月芹. 废弃砖再生骨料在混凝土中的应用研究[D]. 合肥: 安徽建筑大学, 2015.
GU Yue-qin. Research on the application of recycled aggregates from waste brick in concrete [D]. Hefei: Anhui Jianzhu University, 2015.
[13]   吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999: 49-50.
[14]   汪振双. 架构混凝土基础理论研究[D]. 大连: 大连理工大学, 2012.
WANG Zhen-shuang. Study on basic theory of frame concrete [D]. Dalian: Dalian University of Technology, 2012.
[15]   刘莎. 卵石混凝土的架构理论研究[D]. 大连: 大连理工大学, 2014.
LIU Sha. Research on frame theory of pebble concrete [D]. Dalian: Dalian University of Technology, 2014.
[16]   王林杰. 破碎卵石混凝土的架构理论研究[D]. 大连: 大连理工大学, 2016.
WANG Lin-jie. Research on frame theory of broken pebble concrete [D]. Dalian: Dalian University of Technology, 2016.
[17]   侯文博. 轻骨料架构混凝土理论研究[D]. 大连: 大连理工大学, 2014.
HOU Wen-bo. Study on frame theory of light weight concrete [D]. Dalian: Dalian University of Technology, 2014.
[18]   王晓建, 仵纪荣, 田尔布 骨架沥青混合料与架构混凝土的对比[J]. 交通标准化, 2007, (11): 44- 47
WANG Xiao-jian, WU Ji-rong, TIAN Er-bu Contrasting skeleton asphalt mixture with structure concrete[J]. Communications Standardization, 2007, (11): 44- 47
doi: 10.3869/j.issn.1002-4786.2007.11.009
[19]   宿辉, 唐阳, 韩国松, 等 基于SEM和ICT的建筑垃圾再生砖细观破坏机理[J]. 混凝土与水泥制品, 2014, (10): 93- 97
SU Hui, TANG Yang, HAN Guo-song, et al Microscopic destruction mechanism of recycled building bricks based on SEM and ICT[J]. Concrete and Cement Products, 2014, (10): 93- 97
doi: 10.3969/j.issn.1000-4637.2014.10.023
[20]   高丹盈, 景嘉骅, 周潇 混杂纤维增强再生砖骨料混凝土增强机制与抗压性能计算方法[J]. 复合材料学报, 2018, 35 (12): 3441- 3449
GAO Dan-ying, JING Jia-hua, ZHOU Xiao Hybrid fiber reinforced recycled brick aggregate concrete reinforcement mechanism and compression method calculation method[J]. Journal of Composite Materials, 2018, 35 (12): 3441- 3449
[21]   杨再富. 粗集料对混凝土强度影响的试验研究与数值模拟[D]. 重庆: 重庆大学, 2005.
YANG Zai-fu. Experimental study and numerical simulation on the influence of coarse aggregate on concrete strength [D]. Chongqing: Chongqing University, 2005.
[22]   ?ZTURAN T, CECEN C Effect of coarse aggregate type on mechanical properties of concretes with different strengths[J]. Cement and Concrete Research, 1997, 27 (2): 165- 170
doi: 10.1016/S0008-8846(97)00006-9
[23]   BESHR H, ALMUSALLAM A A, MASLEHUDDIN M Effect of coarse aggregate quality on the mechanical properties of high strength concrete[J]. Conctruction and Building Materials, 2003, 17 (2): 97- 103
doi: 10.1016/S0950-0618(02)00097-1
[24]   张君, 刘骞, 王林 混凝土内裂纹沿水泥石/骨料界面或穿透骨料发展的条件[J]. 清华大学学报: 自然科学版, 2004, 44 (3): 387- 390
ZHANG Jun, LIU Qian, WANG Lin Conditions promoting crack growth in concrete along the aggregate/matrix interface or into the aggregate[J]. Journal of Tsinghua University: Science and Technology, 2004, 44 (3): 387- 390
[25]   SCRIVENER K L, CRUMBIE A K, LAUGESEN P The interfacial transition zone (ITZ) between cement paste and aggregate in concrete[J]. Interface Science, 2004, 12 (4): 411- 421
doi: 10.1023/B:INTS.0000042339.92990.4c
[26]   董芸, 杨华全, 张亮, 等 骨料界面特性对混凝土力学性能的影响[J]. 建筑材料学报, 2014, 17 (4): 598- 605
DONG Yun, YANG Hua-quan, ZHANG Liang, et al Effects of aggregate interface characteristics on the mechanical property of concrete[J]. Journal of Building Materials, 2014, 17 (4): 598- 605
doi: 10.3969/j.issn.1007-9629.2014.04.007
[27]   AK?AO?LU T, TOKYAY M, ?ELIK T Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression[J]. Cement and Concrete Composites, 2004, 26 (6): 633- 638
doi: 10.1016/S0958-9465(03)00092-1
[28]   刘代, 董长振 粗集料的技术指标对水泥混凝土性能的影响[J]. 山西建筑, 2012, 38 (6): 124- 125
LIU Dai, DONG Chang-zhen On influence of aggregate technical indexes on performance of cement concrete[J]. Shanxi Architecture, 2012, 38 (6): 124- 125
doi: 10.3969/j.issn.1009-6825.2012.06.072
[29]   韩建国, 阎培渝 粗集料级配对混凝土强度发展历程的影响[J]. 混凝土, 2008, (1): 62- 63
HAN Jian-guo, YAN Pei-yu Effect of coarse aggregate size distribution on concrete strength development process[J]. Concrete, 2008, (1): 62- 63
doi: 10.3969/j.issn.1002-3550.2008.01.019
[30]   张立新, 吕伟民, 陈兵, 等 集料性状对高强混凝土断裂和声发射特性的影响[J]. 同济大学学报: 自然科学版, 2001, 29 (5): 546- 550
ZHANG Li-xing, LV Wei-min, CHEN Bing, et al Effects of aggregates' character on concrete fracture performance and acoustic emission[J]. Journal of Tongji University: Natural Science, 2001, 29 (5): 546- 550
[31]   姜璐, 郑建军 混凝土界面体积百分比的计算方法[J]. 浙江工业大学学报, 2004, 32 (2): 163- 167
JIANG Lu, ZHENG Jian-jun A method of computing the volume fraction of interfacial transition zone in concrete[J]. Journal of Zhejiang University of Technology, 2004, 32 (2): 163- 167
doi: 10.3969/j.issn.1006-4303.2004.02.010
[32]   蔡志达, 张建智, 叶叔通, 等 利用粒料裹浆厚度推演混凝土配比设计方法[J]. 建筑材料学报, 2009, 12 (2): 152- 157
CAI Zhi-da, ZHANG Jian-zhi, YE Shu-tong, et al New approach to design concrete mix proportions by coating thickness of aggregates[J]. Journal of Building Materials, 2009, 12 (2): 152- 157
doi: 10.3969/j.issn.1007-9629.2009.02.006
[33]   沈卫国 抛填集料工艺对混凝土力学性能的影响[J]. 建筑材料学报, 2007, 10 (6): 711- 716
SHEN Wei-guo Effect of scattering-filling aggregate technology on the mechanical properties of concrete[J]. Journal of Building Materials, 2007, 10 (6): 711- 716
doi: 10.3969/j.issn.1007-9629.2007.06.015
[34]   郭有阳 浅析砂率对C50混凝土和易性及强度的影响[J]. 中国公路, 2018, (10): 102- 103
GUO You-yang Influence of sand ratio on workability and strength of C50 concrete[J]. China Highway, 2018, (10): 102- 103
doi: 10.3969/j.issn.1006-3897.2018.10.036
[35]   陈华艳, 罗才松, 黄奕辉, 等 桥梁用钢纤维混凝土最优砂率的试验研究[J]. 铁道建筑, 2007, (10): 97- 99
CHEN Hua-yan, LUO Cai-song, HUANG Yi-hui, et al Experimental study on optimal percentage of sand in steel fibre concrete in bridge girder[J]. Railway Engineering, 2007, (10): 97- 99
doi: 10.3969/j.issn.1003-1995.2007.10.035
[36]   唐明, 张延屏, 梁丽敏 细砂、卵石高强混凝土的最优设计[J]. 沈阳建筑大学学报: 自然科学版, 2004, 20 (4): 304- 307
TANG Ming, ZHANG Yan-ping, LIANG Li-min The optimum design of HSC of fine sand and pebbles[J]. Journal of Shenyang Jianzhu University: Natural Science, 2004, 20 (4): 304- 307
[37]   张学兵. 再生混凝土改性及配合比设计研究[D]. 长沙: 湖南大学, 2015.
ZHANG Xue-bing. Modification and mix proportion design of recycled concrete [D]. Changsha: Hunan University, 2015.
[1] Yong-gui WANG,Shuai-peng LI,Peter HUGHES,Yu-hui FAN,Xiang-yu GAO. Elevated temperatures performance of modified recycled aggregate concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2047-2057.
[2] Jian-feng ZHU,Qiu-shui TUO,Wen-ni DENG,Chun-yi RAO,Hao-xu LIU. Model of compressive strength of cured organic soil solidified by magnesium cement complex curing agent[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2168-2174.
[3] LUO Hua, CHEN Zu-yu, GONG Guo-fang, ZHAO Yu, JING Liu-jie, WANG Chao. Advance rate of TBM based on field boring data[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1566-1574.
[4] GUI Ti, GAO Yu-Feng, ZHANG Qiang, Chen-Guo-Dong, LI Zhen-Shan. Stabilized effectiveness of dredged sludge by quicklime and phosphogypsum[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1974-1978.