|
|
Short-term forecasting method of wind power generation based on BP neural network with combined loss function |
Fang LIU1(),Zhen WANG1,*(),Rui-di LIU1,Kai WANG2 |
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China 2. Department of Computer Science, University of Chinese Academy of Science, Beijing 100049, China |
|
|
Abstract A short-term forecasting model of neural network for wind power generation with the combined loss function was proposed, in order to reduce the side effect of large-scale wind power integration on power system energy balance and increase system’s wind power accommodation ability. A classification method was introduced into the model, and a BP neural network short-term wind power prediction model with the goal of minimizing the combined loss function was proposed, in order to improve the utilization of raw data information. The combined loss function was constructed by the mean square error loss function, the cross-entropy loss function and the rank loss function according to different weight ratios. Compare to the prediction method based on separate loss functions, the combined loss function proposed can effectively improve the prediction accuracy from real wind farm data test.
|
Received: 28 February 2020
Published: 25 April 2021
|
|
Fund: 国家重点研发计划(2017YFB0902000);国家电网公司科技项目(SGXJ0000KXJS1700841) |
Corresponding Authors:
Zhen WANG
E-mail: ee_lf@zju.edu.cn;eezwang@ieee.org
|
基于组合损失函数的BP神经网络风力发电短期预测方法
为了改善风电大规模并网带来的电力系统功率平衡问题,提高系统的风电消纳能力,构建了基于组合损失函数的风电功率预测神经网络模型. 为了提高原始数据信息的利用率,在模型中将数据进行分类,提出以最小化组合损失函数为目标的BP神经网络风力发电短期预测模型,由均方差损失函数、交叉熵损失函数和排序损失函数按照不同的权重比构成组合损失函数. 基于实际风场数据,对基于组合损失函数的预测模型效果进行训练和仿真验证,结果表明相较于基于单一的均方差损失函数的预测方法,提出的组合损失函数可有效提高预测精度.
关键词:
风电预测,
人工神经网络,
功率分段,
特征提取,
损失函数
|
|
[1] |
彭小圣, 熊磊, 文劲宇, 等 风电集群短期及超短期功率预测精度改进方法综述[J]. 中国电机工程学报, 2016, 36 (23): 6315- 6326 PENG Xiao-sheng, XIONG Lei, WEN Jin-yu, et al A summary of the state of the art for short-term and ultra-short-term wind power prediction of regions[J]. Proceedings of the CSEE, 2016, 36 (23): 6315- 6326
|
|
|
[2] |
钱政, 裴岩, 曹利宵, 等 风电功率预测方法综述[J]. 高电压技术, 2016, 42 (4): 1047- 1060 QIAN Zheng, PEI Yan, CAO Li-xiao, et al Review of wind power forecasting method[J]. High Voltage Engineering, 2016, 42 (4): 1047- 1060
|
|
|
[3] |
BARBOUNIS T G, THEOCHARIS J B, ALEXIADIS M C, et al Long-term wind speed and power forecasting using local recurrent neural network models[J]. IEEE Transactions on Energy Conversion, 2006, 21 (1): 273- 284
|
|
|
[4] |
王焱, 汪震, 黄民翔, 等 基于OS-ELM和Bootstrap方法的超短期风电功率预测[J]. 电力系统自动化, 2014, 38 (6): 14- 19 WANG Yan, WANG Zhen, HUANG Min-xiang, et al Ultra-short-term wind power prediction based on OS-ELM and bootstrap method[J]. Automation of Electric Power Systems, 2014, 38 (6): 14- 19
doi: 10.7500/AEPS20130830010
|
|
|
[5] |
王依宁, 解大, 王西田, 等 基于PCA-LSTM模型的风电机网相互作用预测[J]. 中国电机工程学报, 2019, 39 (14): 4070- 4081 WANG Yi-ning, XIE Da, WANG Xi-tian, et al Prediction of interaction between grid and wind farms based on PCA-LSTM model[J]. Proceedings of the CSEE, 2019, 39 (14): 4070- 4081
|
|
|
[6] |
冯双磊, 王伟胜, 刘纯, 等 风电场功率预测物理方法研究[J]. 中国电机工程学报, 2010, 30 (2): 1- 6 FENG Shuang-lei, WANG Wei-sheng, LIU Chun, et al Study on the physical approach to wind power prediction[J]. Proceedings of the CSEE, 2010, 30 (2): 1- 6
|
|
|
[7] |
AHMED A, KHALID M A review on the selected applications of forecasting models in renewable power systems[J]. Renewable and Sustainable Energy Reviews, 2019, 100: 9- 21
|
|
|
[8] |
薛禹胜, 郁琛, 赵俊华, 等 关于短期及超短期风电功率预测的评述[J]. 电力系统自动化, 2015, 39 (6): 141- 151 XUE Yu-sheng, YU Chen, ZHAO Jun-hua, et al A review on short-term and ultra-short-term wind power prediction[J]. Automation of Electric Power Systems, 2015, 39 (6): 141- 151
doi: 10.7500/AEPS20141218003
|
|
|
[9] |
范高锋, 王伟胜, 刘纯, 等 基于人工神经网络的风电功率预测[J]. 中国电机工程学报, 2008, 28 (34): 118- 123 FAN Gao-feng, WANG Wei-sheng, LIU Chun, et al Wind power prediction based on artificial neural network[J]. Proceedings of the CSEE, 2008, 28 (34): 118- 123
doi: 10.3321/j.issn:0258-8013.2008.34.019
|
|
|
[10] |
师洪涛, 杨静玲, 丁茂生, 等 基于小波—BP神经网络的短期风电功率预测方法[J]. 电力系统自动化, 2011, 35 (16): 44- 48 SHI Hong-tao, YANG Jing-ling, DING Mao-sheng, et al A short-term wind power prediction method based on wavelet decomposition and BP neural network[J]. Automation of Electric Power Systems, 2011, 35 (16): 44- 48
|
|
|
[11] |
王增平, 赵兵, 纪维佳, 等 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43 (5): 53- 62 WANG Zeng-ping, ZHAO Bing, JI Wei-jia, et al Short-term load forecasting method based on GRU-NN model[J]. Automation of Electric Power Systems, 2019, 43 (5): 53- 62
|
|
|
[12] |
朱乔木, 李弘毅, 王子琪, 等 基于长短期记忆网络的风电场发电功率超短期预测[J]. 电网技术, 2017, 41 (12): 3797- 3802 ZHU Qiao-mu, LI Hong-yi, WANG Zi-qi, et al Short-term wind power forecasting based on LSTM[J]. Power System Technology, 2017, 41 (12): 3797- 3802
|
|
|
[13] |
BESSA R J, MIRANDA V, GAMA J Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting[J]. IEEE Transactions on Power Systems, 2009, 24 (4): 1657- 1666
|
|
|
[14] |
RUBINSTEIN R Y Optimization of computer simulation models with rare events[J]. European Journal of Operational Research, 1997, 99 (1): 89- 112
|
|
|
[15] |
李航, 统计学习方法[M], 北京: 清华大学出版社, 2012: 7-9.
|
|
|
[16] |
陈宁, 沙倩, 汤奕, 等 基于交叉熵理论的风电功率组合预测方法[J]. 中国电机工程学报, 2012, 32 (4): 29- 34 CHEN Ning, SHAO Qian, TANG Yi A combination method for wind power predication based on cross entropy theory[J]. Proceedings of the CSEE, 2012, 32 (4): 29- 34
|
|
|
[17] |
CHEN W, LIU T Y, LAN Y, et al. Ranking measures and loss functions in learning to rank [C]// Advances in Neural Information Processing Systems 22. [s.l.]: Curran Associates, Inc., 2009: 315-323.
|
|
|
[18] |
WEN Y, ZHANG K, LI Z, et al. A Discriminative feature learning approach for deep face recognition [C]// ECCV 2016. Amsterdam: Springer International Publishing, 2016: 499-515.
|
|
|
[19] |
YANG J, WANG K, PENG X, et al. Deep recurrent multi-instance learning with spatio-temporal features for engagement intensity prediction [C]// ICMI 2018. [s.l.]: ACM, 2018: 594-598.
|
|
|
[20] |
WANG K, YANG J, GUO D, et al. Bootstrap model ensemble and rank loss for engagement intensity regression [C]// ICMI 2019. [s.l.]: ACM, 2019.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|