Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (3): 594-600    DOI: 10.3785/j.issn.1008-973X.2021.03.021
    
Short-term forecasting method of wind power generation based on BP neural network with combined loss function
Fang LIU1(),Zhen WANG1,*(),Rui-di LIU1,Kai WANG2
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
2. Department of Computer Science, University of Chinese Academy of Science, Beijing 100049, China
Download: HTML     PDF(937KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A short-term forecasting model of neural network for wind power generation with the combined loss function was proposed, in order to reduce the side effect of large-scale wind power integration on power system energy balance and increase system’s wind power accommodation ability. A classification method was introduced into the model, and a BP neural network short-term wind power prediction model with the goal of minimizing the combined loss function was proposed, in order to improve the utilization of raw data information. The combined loss function was constructed by the mean square error loss function, the cross-entropy loss function and the rank loss function according to different weight ratios. Compare to the prediction method based on separate loss functions, the combined loss function proposed can effectively improve the prediction accuracy from real wind farm data test.



Key wordswind power forecast      artificial neural network      power segment      feature extraction      loss function     
Received: 28 February 2020      Published: 25 April 2021
CLC:  TM 614  
Fund:  国家重点研发计划(2017YFB0902000);国家电网公司科技项目(SGXJ0000KXJS1700841)
Corresponding Authors: Zhen WANG     E-mail: ee_lf@zju.edu.cn;eezwang@ieee.org
Cite this article:

Fang LIU,Zhen WANG,Rui-di LIU,Kai WANG. Short-term forecasting method of wind power generation based on BP neural network with combined loss function. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 594-600.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.03.021     OR     http://www.zjujournals.com/eng/Y2021/V55/I3/594


基于组合损失函数的BP神经网络风力发电短期预测方法

为了改善风电大规模并网带来的电力系统功率平衡问题,提高系统的风电消纳能力,构建了基于组合损失函数的风电功率预测神经网络模型. 为了提高原始数据信息的利用率,在模型中将数据进行分类,提出以最小化组合损失函数为目标的BP神经网络风力发电短期预测模型,由均方差损失函数、交叉熵损失函数和排序损失函数按照不同的权重比构成组合损失函数. 基于实际风场数据,对基于组合损失函数的预测模型效果进行训练和仿真验证,结果表明相较于基于单一的均方差损失函数的预测方法,提出的组合损失函数可有效提高预测精度.


关键词: 风电预测,  人工神经网络,  功率分段,  特征提取,  损失函数 
Fig.1 Schematic diagram of wind power prediction model based on BP-ANN and combined loss function
风电功率/kW 类别 样本数
<50 1 2094
50~110 2 2120
110~180 3 2008
180~290 4 2356
290~500 5 2169
>500 6 2165
Tab.1 List of wind power,category,and sample numbers
Fig.2 Illustration of Softmax layer
Fig.3 Schematic diagram of rank loss function
Fig.4 Actual power curve and the predicted power curve obtained by using the BP-ANN model and proposed model
训练集样本数 模型 $ {{{\varepsilon}} _{{\bf{MAE}}}} $ /kW $ {{{\varepsilon}} _{{\bf{RMSE}}}} $ /kW 训练时间/s
900 BP-ANN 131.9 150.5 1.8
LSTM 154.0 179.1 5
本文 110.0 133.9 3.1
1800 BP-ANN 126.2 144.4 3.0
LSTM 222.9 259.7 16.5
本文 131.7 141.6 4.5
4500 BP-ANN 152.6 186.8 5.4
LSTM 120.9 147.5 26.6
本文 118.1 144.1 8.8
7200 BP-ANN 133.3 185.2 8.3
LSTM 131.6 161.5 42.9
本文 94.5 105.2 13.8
9000 BP-ANN 125.9 187.7 10.2
LSTM 109.2 130.9 78.8
本文 103.2 128.9 16.6
Tab.2 Comparison of prediction performance
训练集样本数 ${{\varepsilon } }_{{{\rm{MAE}}} }$/ ${{\varepsilon } }_{{{\rm{RMSE}}} }$
MSE MSE+CE MSE+CE+RK
900 121.7/145.0 119.5/138.3 110.0/133.9
1800 153.9/162.6 146.1/155.1 131.7/141.6
4500 134.3/161.0 128.5/150.9 118.1/144.1
7200 104.2/113.3 98.5/108.7 94.5/105.2
9000 146.6/171.9 134.0/159.3 103.2/128.9
Tab.3 Comparison of prediction errors of trained models 单位:kW
${{\alpha } }$/ ${{\beta } }$/ ${{\gamma } }$ ${{\varepsilon } }_{{{\rm{RMSE}}} }$/kW ${{\alpha } }$/ ${{\beta } }$/ ${{\gamma } }$ ${{\varepsilon } }_{{{\rm{RMSE}}} }$/kW ${{\alpha } }$/ ${{\beta } }$/ ${{\gamma } }$ ${{\varepsilon } }_{{{\rm{RMSE}}} }$/kW
1/0.5/0.001 138.9 1/1/0.0005 144.1 1/1/0.005 142.3
1/1/0.002 144.2 1/1/0.01 126.4 1/5/0.001 148.8
1/10/0.001 133.9 2/1/0.001 130.5 10/1/0.001 166.7
Tab.4 Comparison of prediction errors of different loss function weight coefficients
[1]   彭小圣, 熊磊, 文劲宇, 等 风电集群短期及超短期功率预测精度改进方法综述[J]. 中国电机工程学报, 2016, 36 (23): 6315- 6326
PENG Xiao-sheng, XIONG Lei, WEN Jin-yu, et al A summary of the state of the art for short-term and ultra-short-term wind power prediction of regions[J]. Proceedings of the CSEE, 2016, 36 (23): 6315- 6326
[2]   钱政, 裴岩, 曹利宵, 等 风电功率预测方法综述[J]. 高电压技术, 2016, 42 (4): 1047- 1060
QIAN Zheng, PEI Yan, CAO Li-xiao, et al Review of wind power forecasting method[J]. High Voltage Engineering, 2016, 42 (4): 1047- 1060
[3]   BARBOUNIS T G, THEOCHARIS J B, ALEXIADIS M C, et al Long-term wind speed and power forecasting using local recurrent neural network models[J]. IEEE Transactions on Energy Conversion, 2006, 21 (1): 273- 284
[4]   王焱, 汪震, 黄民翔, 等 基于OS-ELM和Bootstrap方法的超短期风电功率预测[J]. 电力系统自动化, 2014, 38 (6): 14- 19
WANG Yan, WANG Zhen, HUANG Min-xiang, et al Ultra-short-term wind power prediction based on OS-ELM and bootstrap method[J]. Automation of Electric Power Systems, 2014, 38 (6): 14- 19
doi: 10.7500/AEPS20130830010
[5]   王依宁, 解大, 王西田, 等 基于PCA-LSTM模型的风电机网相互作用预测[J]. 中国电机工程学报, 2019, 39 (14): 4070- 4081
WANG Yi-ning, XIE Da, WANG Xi-tian, et al Prediction of interaction between grid and wind farms based on PCA-LSTM model[J]. Proceedings of the CSEE, 2019, 39 (14): 4070- 4081
[6]   冯双磊, 王伟胜, 刘纯, 等 风电场功率预测物理方法研究[J]. 中国电机工程学报, 2010, 30 (2): 1- 6
FENG Shuang-lei, WANG Wei-sheng, LIU Chun, et al Study on the physical approach to wind power prediction[J]. Proceedings of the CSEE, 2010, 30 (2): 1- 6
[7]   AHMED A, KHALID M A review on the selected applications of forecasting models in renewable power systems[J]. Renewable and Sustainable Energy Reviews, 2019, 100: 9- 21
[8]   薛禹胜, 郁琛, 赵俊华, 等 关于短期及超短期风电功率预测的评述[J]. 电力系统自动化, 2015, 39 (6): 141- 151
XUE Yu-sheng, YU Chen, ZHAO Jun-hua, et al A review on short-term and ultra-short-term wind power prediction[J]. Automation of Electric Power Systems, 2015, 39 (6): 141- 151
doi: 10.7500/AEPS20141218003
[9]   范高锋, 王伟胜, 刘纯, 等 基于人工神经网络的风电功率预测[J]. 中国电机工程学报, 2008, 28 (34): 118- 123
FAN Gao-feng, WANG Wei-sheng, LIU Chun, et al Wind power prediction based on artificial neural network[J]. Proceedings of the CSEE, 2008, 28 (34): 118- 123
doi: 10.3321/j.issn:0258-8013.2008.34.019
[10]   师洪涛, 杨静玲, 丁茂生, 等 基于小波—BP神经网络的短期风电功率预测方法[J]. 电力系统自动化, 2011, 35 (16): 44- 48
SHI Hong-tao, YANG Jing-ling, DING Mao-sheng, et al A short-term wind power prediction method based on wavelet decomposition and BP neural network[J]. Automation of Electric Power Systems, 2011, 35 (16): 44- 48
[11]   王增平, 赵兵, 纪维佳, 等 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43 (5): 53- 62
WANG Zeng-ping, ZHAO Bing, JI Wei-jia, et al Short-term load forecasting method based on GRU-NN model[J]. Automation of Electric Power Systems, 2019, 43 (5): 53- 62
[12]   朱乔木, 李弘毅, 王子琪, 等 基于长短期记忆网络的风电场发电功率超短期预测[J]. 电网技术, 2017, 41 (12): 3797- 3802
ZHU Qiao-mu, LI Hong-yi, WANG Zi-qi, et al Short-term wind power forecasting based on LSTM[J]. Power System Technology, 2017, 41 (12): 3797- 3802
[13]   BESSA R J, MIRANDA V, GAMA J Entropy and correntropy against minimum square error in offline and online three-day ahead wind power forecasting[J]. IEEE Transactions on Power Systems, 2009, 24 (4): 1657- 1666
[14]   RUBINSTEIN R Y Optimization of computer simulation models with rare events[J]. European Journal of Operational Research, 1997, 99 (1): 89- 112
[15]   李航, 统计学习方法[M], 北京: 清华大学出版社, 2012: 7-9.
[16]   陈宁, 沙倩, 汤奕, 等 基于交叉熵理论的风电功率组合预测方法[J]. 中国电机工程学报, 2012, 32 (4): 29- 34
CHEN Ning, SHAO Qian, TANG Yi A combination method for wind power predication based on cross entropy theory[J]. Proceedings of the CSEE, 2012, 32 (4): 29- 34
[17]   CHEN W, LIU T Y, LAN Y, et al. Ranking measures and loss functions in learning to rank [C]// Advances in Neural Information Processing Systems 22. [s.l.]: Curran Associates, Inc., 2009: 315-323.
[18]   WEN Y, ZHANG K, LI Z, et al. A Discriminative feature learning approach for deep face recognition [C]// ECCV 2016. Amsterdam: Springer International Publishing, 2016: 499-515.
[19]   YANG J, WANG K, PENG X, et al. Deep recurrent multi-instance learning with spatio-temporal features for engagement intensity prediction [C]// ICMI 2018. [s.l.]: ACM, 2018: 594-598.
[20]   WANG K, YANG J, GUO D, et al. Bootstrap model ensemble and rank loss for engagement intensity regression [C]// ICMI 2019. [s.l.]: ACM, 2019.
[1] Shi-lin ZHANG,Si-ming MA,Zi-qian GU. Large margin metric learning based vehicle re-identification method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 948-956.
[2] Hong CHENG,Jia-jie HU,Yong LIU,Yuan-qing YE. Three-dimensional reconstruction algorithm based on fusion of transport of intensity equation and neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 658-664.
[3] Yi-xiong FENG,Kang-jie LI,Yi-cong GAO,Hao ZHEN,Jian-rong TAN. Shaft surface defect detection method based on feature and morphology reconstruction[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 427-434.
[4] Mei-ying QIAO,Xia-xia TANG,Shu-hao YAN,Jian-ke SHI. Bearing fault diagnosis based on improved sparse filter and deep network fusion[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2301-2309.
[5] Xiao-hu ZHAO,Liang-fei YIN,Cheng-long ZHAO. Image captioning based on global-local feature and adaptive-attention[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 126-134.
[6] Gui-ran HE,Qi LI,Hua-jun FENG,Zhi-hai XU,Yue-ting CHEN. Dual-focal camera continuous digital zoom based onCNN and feature extraction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1182-1189.
[7] Yue DONG,Hua-jun FENG,Zhi-hai XU,Yue-ting CHEN,Qi LI. Attention Res-Unet: an efficient shadow detection algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 373-381.
[8] Xiang-long ZHAO,Jie CHEN,Rong-jing HONG,Hua WANG,Yuan-yuan LI. Adaptive feature extraction method for slewing bearing based on Wavelet leader and optimized isometric mapping method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2092-2101.
[9] TONG Shui-guang, ZHANG Yi-dong, XU Jian, CONG Fei-yun. Spectral band refined composite multiscale fuzzy entropy and its application in fault diagnosis of rolling bearings[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1509-1516.
[10] YU Yong, ZHOU Yang, CAO Peng, ZHAO Gang. In-process model construction method based on model-based definition model[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1025-1034.
[11] HUANG Zeng, WANG Rui, ZHAO Yu, WEI Zhen-lei. Susceptibility assessment of landslides triggered by buried fault earthquake[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2136-2143.
[12] CHIANG Yen ming, ZHANG Jian quan, MING Yan. Flood forecasting by ensemble neural networks[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1471-1478.
[13] TAN Hailong, LIU Kangling, JIN Xin, SHI Xiang rong, LIANG Jun. Multivariate time series classification based on μσ-DWC feature and tree-structured M-SVM[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1061-1069.
[14] LIU Kai1, ZHANG Li-min1, ZHANG Chao2. New hybrid sparse penalty mechanism of restricted Boltzmann machine[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1070-1078.
[15] BAI Fan, ZHENG Hui feng, SHEN Ping ping, WANG Cheng, YU Sang sang. Plant species identification method based on flower feature coding classification[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1902-1908.