Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (3): 427-434    DOI: 10.3785/j.issn.1008-973X.2020.03.001
Mechanical Engineering     
Shaft surface defect detection method based on feature and morphology reconstruction
Yi-xiong FENG(),Kang-jie LI,Yi-cong GAO*(),Hao ZHEN,Jian-rong TAN
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(3598KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A surface defect detection method based on feature and morphology reconstruction was proposed, aiming at the problems of high misdetection rate of water stain residue and low efficiency of manual re-inspection in machine vision detection of defects in shaft parts surface. The high-speed industry line scanning image of the shaft part was preprocessed, and image segmentation was completed based on the improved threshold iteration algorithm. Defect image was extracted by removing background, noise, and interference. A surface defect feature model of shaft parts based on envelope contour of curve cluster was established. Combining the area, the proportion of area and coarseness of each connected area in the segmented image, a logistic regression classifier was trained to recognize the typical surface defects of pits, cracks, and pits of shaft parts. Combining with image depth information, defect morphology reconstruction was carried out to eliminate pseudo-defects such as water stain, so as to improve the robustness of surface defect detection of shaft parts. The experimental results show that this method is effective for surface defect detection of shaft parts with high defect recognition rate and robustness. The proposed method has an average recognition time of 3.69 seconds and a weighted recognition rate of 98.86%, which can accurately identify three kinds of typical defects and pseudo-defects.



Key wordsdefect of shaft surface      defect feature extraction      shape reconstruction      defect classification     
Received: 05 May 2019      Published: 05 March 2020
CLC:  TN 911.73  
Corresponding Authors: Yi-cong GAO     E-mail: fyxtv@zju.edu.cn;gaoyicong@zju.edu.cn
Cite this article:

Yi-xiong FENG,Kang-jie LI,Yi-cong GAO,Hao ZHEN,Jian-rong TAN. Shaft surface defect detection method based on feature and morphology reconstruction. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 427-434.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.03.001     OR     http://www.zjujournals.com/eng/Y2020/V54/I3/427


基于特征与形貌重构的轴件表面缺陷检测方法

针对轴件表面缺陷机器视觉检测方法中的水渍残留误检率高和人工复检效率低问题,提出一种基于特征与形貌重构的轴件表面缺陷检测方法. 对轴件工业高速线扫描图像进行预处理,基于改进的阀值迭代算法完成图像分割,通过去除背景、噪点和干扰提取缺陷图像. 建立基于曲线簇包络轮廓的轴件表面缺陷特征模型,结合分割图像各连通域的面积、面积占比、粗短度训练逻辑回归分类器,对凹坑、裂纹和麻点等轴件表面典型缺陷进行识别,并结合图像深度信息进行缺陷形貌重构,消除水渍等伪缺陷,提高轴件表面缺陷检测鲁棒性. 实验结果表明,所提出的轴件表面缺陷检测方法有效,具有较高的缺陷识别率和鲁棒性能,平均识别时间为3.69 s,缺陷轴加权识别率为98.86%,可以对3类典型缺陷和水渍进行准确识别.


关键词: 轴件表面缺陷,  缺陷特征提取,  形貌重构,  缺陷分类 
Fig.1 Hardware structure diagram of shaft scanning image acquisition system
Fig.2 Line scanning image of shaft
Fig.3 Gray distribution along lines A1, A2 and A3 in line scanning image
Fig.4 Normalized gray histogram of shaft image
Fig.5 Processed results of shaft image by iterative threshold algorithms
Fig.6 Cumulative value in vertical derection of shaft binary graph
Fig.7 Defect model of shaft surface
Fig.8 Actual defect images and corresponding defect models
Fig.9 Characteristic sketch of defect in shaft surface
Fig.10 Pseudo-defect water stain image
Fig.11 Three-dimensional reconstruction images of four kinds of defects in shaft surface
Fig.12 Overall flow chart of defect detection algorithm
Fig.13 Test results of qualified shaft
Fig.14 Test results of defect shaft
缺陷识别统计项 数值 缺陷识别统计项 数值
TP 955 TN 21
FN 22 t/s 3.69
FP 1 F1/% 98.86
Tab.1 Defect shaft recognition results
类别 n1 n2 n3 n4 η
训练集 25 25 25 25 82
测试集 5 5 5 5 75
Tab.2 Experimental results of classifier
[1]   谢中灏. 重载轴毂复合连接扭矩传递特性的研究[D]. 杭州: 浙江大学, 2014: 1-2.
XIE Zhong-hao. Torque transfer characteristics of heavy-duty hub-axle composite connections[D]. Hangzhou: Zhejiang University, 2014: 1-2.
[2]   高义林. 基于线阵CCD的车轮表面荧光磁粉探伤系统的研究[D]. 合肥: 安徽大学, 2010: 10-13.
GAO Yi-lin. Research on the fluorescent magnetic particle detection system for wheel surface based on linear array CCD[D]. Hefei: Anhui University, 2010: 10-13.
[3]   BHUTADA G G, ANAND R S, SAXENA S C Edge preserved image enhancement using adaptive fusion of images denoised by wavelet and curvelet transform[J]. Digital Signal Processing, 2011, 21 (1): 118- 130
doi: 10.1016/j.dsp.2010.09.002
[4]   IBRAHIM H, ABDALAMEER AK Improvement of quantized adaptive switching median filter for impulse noise reduction in gray-scale digital images[J]. Journal Citation Reports, 2019, 27 (1): 580- 594
[5]   MUKHERJEE D, MUKHOPADHYAY S, BISWAS GP FPGA based parallel implementation of morphological operators for 2d gray-level images[J]. Arabian Journal for Science and Engineering, 2017, 42 (8): 3191- 3206
doi: 10.1007/s13369-017-2429-y
[6]   ZHANG W, LI W S, YAN J W, et al Adaptive threshold selection for background removal in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2016, 90: 209- 216
[7]   DEVI KD, MAHESWARI P U Digital acquisition and character extraction from stone inscription images using modified fuzzy entropy-based adaptive thresholding[J]. Soft Computing, 2019, 23 (8): 2611- 2626
doi: 10.1007/s00500-018-3610-2
[8]   YUE J, WANG Z X, HAN J, et al A target extraction method of infrared image based on edge and transition region[J]. Spectroscopy and Spectral Analysis, 2018, 38 (6): 1729- 1735
[9]   YUN J P, KIM D, KIM K Vision-based surface defect inspection for thick steel plates[J]. Optical Engineering, 2017, 56 (5): 1- 13
[10]   GAN J R, LI Q T, WANG J Z A hierarchical extractor-based visual rail surface inspection system[J]. IEEE Sensors Journal, 2017, 17 (23): 7935- 7944
doi: 10.1109/JSEN.2017.2761858
[11]   MENTOURI Z, MOUSSAOUI A, BOUDJEHEM D, et al Steel strip surface defect identification based on binarized statistical features[J]. University Politehnica of Bucharest Scientific Bulletin Series B-Chemistry and Materials Science, 2018, 80 (4): 145- 156
[12]   SAYED M S. Robust fabric defect detection algorithm using entropy filtering and minimum error thresholding[C] // IEEE International Midwest Symposium on Circuits and Systems. Abu Dhabi: IEEE, 2017: 1-4.
[13]   LI M X, LIU Q X, HE C Y Research and achievement on cigarette label printing defect detection algorithm[J]. Applied Mechanics and Materials, 2012, 200: 689- 693
doi: 10.4028/www.scientific.net/AMM.200.689
[14]   ZHANG Y, LEFEBVRE D, LI Q Automatic detection of defects in tire radiographic images[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14 (3): 1378- 1386
doi: 10.1109/TASE.2015.2469594
[15]   何再兴, 张树有, 黄长林 基于缺陷特征与种子填充的轮毂缺陷检测方法[J]. 浙江大学学报: 工学版, 2009, 43 (7): 1230- 1237
HE Zai-xing, ZHANG Shu-you, HUANG Chang-lin Hub defect detection method based on defect characteristics and seed filling[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (7): 1230- 1237
[16]   王宣银, 梁冬泰 基于多元图像分析的表面缺陷检测算法[J]. 浙江大学学报: 工学版, 2010, 44 (3): 448- 452
WANG Xuan-yin, LIANG Dong-tai Surface defect detection algorithm based on multivariate image analysis[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (3): 448- 452
[17]   李漫丽, 赵鹏 基于图像融合的木板表面缺陷检测研究[J]. 液晶与显示, 2016, 31 (9): 882- 888
LI Man-li, ZHAO Peng Image fusion based wood surface defect detection[J]. LCD and Display, 2016, 31 (9): 882- 888
[18]   LU J L, LIN M X An online surface defects detection system for step-axis[J]. Advanced Materials Research, 2012, 472: 954- 957
[19]   孙雪晨, 姜肖楠, 傅瑶, 等 基于机器视觉的凸轮轴表面缺陷检测系统[J]. 红外与激光工程, 2013, 42 (6): 1647- 1653
SUN Xue-chen, JIANG Xiao-nan, FU Yao, et al Camshaft surface defect detection system based on machine vision[J]. Infrared and Laser Engineering, 2013, 42 (6): 1647- 1653
doi: 10.3969/j.issn.1007-2276.2013.06.047
[20]   SHAO L, MU Y, GUO P, et al Research of image segmentation based on iterative threshold[J]. Applied Mechanics and Materials, 2015, 701-702: 330- 333
[21]   TSAI P S, SHAH M Shape from shading using linear approximation[J]. Image and Vision Computing, 1995, 12 (8): 487- 498
[1] Zhen JIA,Wen-de DONG,Gui-li XU,Shi-peng ZHU. Image Poisson denoising algorithm based on Markov fields of experts[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1164-1169.
[2] WANG Zhi, ZHU Shi qiang, BU Yan, GUO Zhen min. Stereo matching algorithm using improved guided filtering[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2262-2269.
[3] ZHU Zhu, LIU Ji-lin. Real-time Markov random field based ground segmentation of 3D Lidar data[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 464-469.
[4] WU Yi-quan, ZHANG Xiao-jie, WU Shi-hua, ZHANG Sheng-wei. Two-dimensional minimum error thresholding based on chaotic
particle swarm optimization or decomposition
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1198-1205.
[5] MAO Feng, ZHANG Shu-you, SHI Yue-ding. Shape detection for molding products based on
multi-resolution contour matching
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1013-1020.
[6] GE Peng, LI Qi, FENG Hua-jun, XU Zhi-hai, CHEN Yue-ting. Sub-pixel motion detection by joint transform correlator
based on bicubic spline interpolation
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(11): 2198-2202.
[7] XIE Jiang-Jun, HOU Di-Bei, HUANG Beng-Cha, ZHANG Guang-Xin, ZHOU Ze-Kuai. Fast single parameter level set segmentation based on
semi-implicit schemes
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1496-1501.
[8] MAO Feng, ZHANG Shu-Wei, HUANG Chang-Lin. Inspection of foreign substances in mould using image scattergrams and multi|resolution analysis[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(10): 1749-1756.
[9] LING Bei, GU Wei-Kang, DU Xin. Error concealment for whole frame losses in H264[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(09): 1732-1738.