Mechanical Engineering,Electrical Engineering |
|
|
|
|
XGBoost based intelligent determination system design of tunnel boring machine operation parameters |
Fei WANG(),Guo-fang GONG*(),Li-wen DUAN,Yong-feng QIN |
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract An intelligent determination method was presented for the operating parameters of hard rock tunnel boring machine (TBM) based on extreme gradient boosting (XGBoost) prediction model in order to realize the homogeneity of the tunnel constructions. The field operation index (FOI) was defined as the characteristic parameter of the surrounding rock types in order to replace field penetration index (FPI), and the XGBoost based prediction model was established to realize the accurate prediction of FOI value. The expert model was established to associate the FOI value and the specific TBM operation parameters selected by excellent drivers. Then the intelligent determination of the TBM operation parameters can be accomplished. The experiments on practical engineering data show that the operation parameter can be estimated by the proposed parameters determination system. The experimental results indicated that the mean relative error of thrust speed and cutterhead rotational speed decreased by 8.84 % and 7.97 % compared with the conventional system.
|
Received: 26 March 2019
Published: 05 April 2020
|
|
Corresponding Authors:
Guo-fang GONG
E-mail: tropicalfei@zju.edu.cn;gfgong@zju.edu.cn
|
基于XGBoost的隧道掘进机操作参数智能决策系统设计
为了实现隧道施工的同质化,提出基于极端梯度提升算法(XGBoost)预测模型的隧道掘进机(TBM)操作参数的智能决策方法. 定义场操作系数指数(FOI)作为替代传统场切深指数(FPI)的围岩级别特征参数,使用XGBoost算法建立预测模型以实现对FOI的预测,对围岩级别进行预测、判断. 通过对优秀司机在特定FOI下TBM操作参数的选择,建立专家模型实现FOI与特定TBM操作参数的关联,实现TBM操作参数的智能决策. 使用引松工程的现场数据进行对比实验,结果表明,设计的TBM操作参数的智能决策系统能够实现对优秀的TBM司机操作参数决策的复现,相比于以FPI为特征参数的传统智能决策系统,新系统的推进速度和刀盘转速两部分的平均相对误差分别下降8.84 %和7.97 %.
关键词:
隧道掘进机(TBM),
智能决策,
场操作系数指数(FOI),
极端梯度提升算法(XGBoost),
预测
|
|
[1] |
MAIDL B, SCHMID L, RITZ W, et al. Hardrock tunnel boring machines [M]. [S. l.]: Wiley, 2008.
|
|
|
[2] |
王超. TBM岩机映射关系及其优化决策方法研究[D]. 杭州: 浙江大学, 2018. WANG Chao. Research on the relationship of rock type and machine parameters of TBM and its optimal decision method [D]. Hangzhou: Zhejiang University, 2018.
|
|
|
[3] |
YIMIN X, DUAN Y, CHENGHUAN H, et al Numerical simulation of ventilation and dust suppression system for open-type TBM tunneling work area[J]. Tunnelling and Underground Space Technology, 2016, 56 (3): 70- 78
|
|
|
[4] |
周赛群. 全断面硬岩掘进机(TBM)驱动系统研究[D]. 杭州: 浙江大学, 2008. ZHOU Sai-qun. Study on drive system of the full-face tunnel boring machine [D]. Hangzhou: Zhejiang University, 2008.
|
|
|
[5] |
刘然. 盾构机刀盘同步驱动系统自适应均载控制研究[D]. 大连: 大连理工大学, 2013. LIU Ran. Research on adaptive load sharing control for sychronous driving system of cutterhead in shield machines [D]. Dalian: Dalian University of Technology, 2013.
|
|
|
[6] |
BARLA G, PELIZZA S. TBM tunnelling in difficult ground conditions [C]// ISRM International Symposium. Melbourne: International Society for Rock Mechanics and Rock Engineering, 2000.
|
|
|
[7] |
OKUBO S, FUKUI K, CHEN W Expert system for applicability of tunnel boring machines in Japan[J]. Rock Mechanics and Rock Engineering, 2003, 36 (4): 305- 322
doi: 10.1007/s00603-002-0049-6
|
|
|
[8] |
HASSANPOUR J, ROSTAMI J, KHAMEHCHIYAN M, et al Developing new equations for TBM performance prediction in carbonate-argillaceous rocks: a case history of Nowsood water conveyance tunnel[J]. Geomechanics and Geoengineering, 2009, 4 (4): 287- 297
doi: 10.1080/17486020903174303
|
|
|
[9] |
HASSANPOUR J, ROSTAMI J, KHAMEHCHIYAN M, et al TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel[J]. Rock Mechanics and Rock Engineering, 2010, 43 (4): 427- 445
doi: 10.1007/s00603-009-0060-2
|
|
|
[10] |
熊帆. 基于 PSO-SVR 算法的 TBM 掘进效率预测及围岩分级研究[D]. 西安: 长安大学, 2016. XIONG Fan. Research of TBM excavation efficiency prediction and rock classification based on the PSO-SVR algorithm [D]. Xi’an: Chang’an University, 2016.
|
|
|
[11] |
罗华. 基于线性回归和深度置信网络的 TBM 性能预测研究[D]. 杭州: 浙江大学, 2018. LUO Hua. Application of linear regression analysis and deep belief network for performance prediction of TBM [D]. Hangzhou: Zhejiang University, 2018.
|
|
|
[12] |
杜立杰, 齐志冲, 韩小亮, 等 基于现场数据的TBM可掘性和掘进性能预测方法[J]. 煤炭学报, 2015, 40 (6): 1284- 1289 DU Li-jie, QI Zhi-chong, HAN Xiao-liang, et al Prediction method for the boreability and performance of hard rock TBM based on boring data on site[J]. Journal of China Coal Society, 2015, 40 (6): 1284- 1289
|
|
|
[13] |
李守巨, 曹丽娟 盾构机掘进过程中的决策支持系统[J]. 信息技术, 2011, (10): 39- 42 LI Shou-jun, CAO Li-juan Decision support system in shield tunneling[J]. Information Technology, 2011, (10): 39- 42
doi: 10.3969/j.issn.1009-2552.2011.10.010
|
|
|
[14] |
CHEN K, ZHENG Z, ZHANG Q Residual analysis in inverse identification of total thrust on shield tunneling machine[J]. Applied Mechanics and Materials, 2013, 455: 557- 560
doi: 10.4028/www.scientific.net/AMM.455.557
|
|
|
[15] |
张娜, 李建斌, 荆留杰, 等 TBM掘进参数智能控制系统的研究与应用[J]. 隧道建设, 2018, 38 (10): 1734- 1740 ZHANG Na, LI Jian-bin, JING Liu-jie, et al Study and application of intelligent control system of TBM tunneling parameters[J]. Tunnel Construction, 2018, 38 (10): 1734- 1740
doi: 10.3973/j.issn.2096-4498.2018.10.019
|
|
|
[16] |
YAGIZ S, GOKCEOGLU C, SEZER E, et al Application of two non-linear prediction tools to the estimation of tunnel boring machine performance[J]. Engineering Applications of Artificial Intelligence, 2009, 22 (4/5): 808- 814
|
|
|
[17] |
JAMSHIDI A Prediction of TBM penetration rate from brittleness indexes using multiple regression analysis[J]. Modeling Earth Systems and Environment, 2018, 4 (1): 383- 394
doi: 10.1007/s40808-018-0432-2
|
|
|
[18] |
GHASEMI E, YAGIZ S, ATAEI M Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic[J]. Bulletin of Engineering Geology and the Environment, 2014, 73 (1): 23- 35
doi: 10.1007/s10064-013-0497-0
|
|
|
[19] |
JAVAD G, NARGES T Application of artificial neural networks to the prediction of tunnel boring machine penetration rate[J]. Mining Science and Technology (China), 2010, 20 (5): 727- 733
doi: 10.1016/S1674-5264(09)60271-4
|
|
|
[20] |
王超, 龚国芳, 杨华勇, 等 NSVR 硬岩隧道掘进机刀盘扭矩预测分析[J]. 浙江大学学报:工学版, 2018, 52 (3): 479- 486 WANG Chao, GONG Guo-fang, YANG Hua-yong, et al NVSR based predictive analysis of cutterhead torque for hard rock TBM[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (3): 479- 486
|
|
|
[21] |
吴煜宇, 吴湘滨, 尹俊涛 关于 TBM 施工隧洞围岩分类方法的研究[J]. 水文地质工程地质, 2006, 33 (5): 120- 122 WU Yu-yu, WU Xiang-bin, YIN Jun-tao Research with relation to rock classification of TBM Tunnels[J]. Hydrogeology and Engineering Geology, 2006, 33 (5): 120- 122
doi: 10.3969/j.issn.1000-3665.2006.05.028
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|