Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (4): 633-641    DOI: 10.3785/j.issn.1008-973X.2020.04.001
Mechanical Engineering,Electrical Engineering     
XGBoost based intelligent determination system design of tunnel boring machine operation parameters
Fei WANG(),Guo-fang GONG*(),Li-wen DUAN,Yong-feng QIN
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1781KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An intelligent determination method was presented for the operating parameters of hard rock tunnel boring machine (TBM) based on extreme gradient boosting (XGBoost) prediction model in order to realize the homogeneity of the tunnel constructions. The field operation index (FOI) was defined as the characteristic parameter of the surrounding rock types in order to replace field penetration index (FPI), and the XGBoost based prediction model was established to realize the accurate prediction of FOI value. The expert model was established to associate the FOI value and the specific TBM operation parameters selected by excellent drivers. Then the intelligent determination of the TBM operation parameters can be accomplished. The experiments on practical engineering data show that the operation parameter can be estimated by the proposed parameters determination system. The experimental results indicated that the mean relative error of thrust speed and cutterhead rotational speed decreased by 8.84 % and 7.97 % compared with the conventional system.



Key wordstunnel boring machine (TBM)      intelligent determination      field operation index (FOI)      extreme gradient boosting (XGBoost)      prediction     
Received: 26 March 2019      Published: 05 April 2020
CLC:  TH 137  
Corresponding Authors: Guo-fang GONG     E-mail: tropicalfei@zju.edu.cn;gfgong@zju.edu.cn
Cite this article:

Fei WANG,Guo-fang GONG,Li-wen DUAN,Yong-feng QIN. XGBoost based intelligent determination system design of tunnel boring machine operation parameters. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 633-641.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.04.001     OR     http://www.zjujournals.com/eng/Y2020/V54/I4/633


基于XGBoost的隧道掘进机操作参数智能决策系统设计

为了实现隧道施工的同质化,提出基于极端梯度提升算法(XGBoost)预测模型的隧道掘进机(TBM)操作参数的智能决策方法. 定义场操作系数指数(FOI)作为替代传统场切深指数(FPI)的围岩级别特征参数,使用XGBoost算法建立预测模型以实现对FOI的预测,对围岩级别进行预测、判断. 通过对优秀司机在特定FOI下TBM操作参数的选择,建立专家模型实现FOI与特定TBM操作参数的关联,实现TBM操作参数的智能决策. 使用引松工程的现场数据进行对比实验,结果表明,设计的TBM操作参数的智能决策系统能够实现对优秀的TBM司机操作参数决策的复现,相比于以FPI为特征参数的传统智能决策系统,新系统的推进速度和刀盘转速两部分的平均相对误差分别下降8.84 %和7.97 %.


关键词: 隧道掘进机(TBM),  智能决策,  场操作系数指数(FOI),  极端梯度提升算法(XGBoost),  预测 
Fig.1 Arrangement of TBM construction in Yinsong project
Fig.2 Proportion of surrounding rock grade in project
Fig.3 Penetration distribution in training data set
Fig.4 Relationship between penetration and mileage under normal excavation condition
Fig.5 Comparison of penetration data before and after removal of initial excavation stage
Fig.6 Relationship between total thrust and penetration under different surrounding rock grades
围岩级别 a b R2
II 3.47 0.54 0.78
III 3.84 0.34 0.84
IV 4.07 0.23 0.83
V 4.11 0.13 0.79
Tab.1 Parameter list of data fitting for different surrounding rock type
Fig.7 Relationship between FPI and thrust speed
参数 数值
粒子个数 100
最大迭代次数 100
惯性权重 0.5
加速度权重 0.5
加速度权重 0.5
最小适应度差 0.001
Tab.2 Hyperparametric table of PSO algorithm
Fig.8 Relationship between total thrust force and penetration rate
Fig.9 Relationship between total thrust force and operation index
Fig.10 Flow chart of XGBoost algorithm
Fig.11 Influence of model input length on model training time
Fig.12 Influence of model input length on mean relative error and ${R^2}$
Fig.13 Variation of mean relative error with prediction length
Fig.14 FOI prediction performance
Fig.15 Operation parameters selection of driver in different field operation index
Fig.16 Comparison of man-machine decision on thrust speed
Fig.17 Comparison of man-machine decision on cutterhead rotary speed
[1]   MAIDL B, SCHMID L, RITZ W, et al. Hardrock tunnel boring machines [M]. [S. l.]: Wiley, 2008.
[2]   王超. TBM岩机映射关系及其优化决策方法研究[D]. 杭州: 浙江大学, 2018.
WANG Chao. Research on the relationship of rock type and machine parameters of TBM and its optimal decision method [D]. Hangzhou: Zhejiang University, 2018.
[3]   YIMIN X, DUAN Y, CHENGHUAN H, et al Numerical simulation of ventilation and dust suppression system for open-type TBM tunneling work area[J]. Tunnelling and Underground Space Technology, 2016, 56 (3): 70- 78
[4]   周赛群. 全断面硬岩掘进机(TBM)驱动系统研究[D]. 杭州: 浙江大学, 2008.
ZHOU Sai-qun. Study on drive system of the full-face tunnel boring machine [D]. Hangzhou: Zhejiang University, 2008.
[5]   刘然. 盾构机刀盘同步驱动系统自适应均载控制研究[D]. 大连: 大连理工大学, 2013.
LIU Ran. Research on adaptive load sharing control for sychronous driving system of cutterhead in shield machines [D]. Dalian: Dalian University of Technology, 2013.
[6]   BARLA G, PELIZZA S. TBM tunnelling in difficult ground conditions [C]// ISRM International Symposium. Melbourne: International Society for Rock Mechanics and Rock Engineering, 2000.
[7]   OKUBO S, FUKUI K, CHEN W Expert system for applicability of tunnel boring machines in Japan[J]. Rock Mechanics and Rock Engineering, 2003, 36 (4): 305- 322
doi: 10.1007/s00603-002-0049-6
[8]   HASSANPOUR J, ROSTAMI J, KHAMEHCHIYAN M, et al Developing new equations for TBM performance prediction in carbonate-argillaceous rocks: a case history of Nowsood water conveyance tunnel[J]. Geomechanics and Geoengineering, 2009, 4 (4): 287- 297
doi: 10.1080/17486020903174303
[9]   HASSANPOUR J, ROSTAMI J, KHAMEHCHIYAN M, et al TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel[J]. Rock Mechanics and Rock Engineering, 2010, 43 (4): 427- 445
doi: 10.1007/s00603-009-0060-2
[10]   熊帆. 基于 PSO-SVR 算法的 TBM 掘进效率预测及围岩分级研究[D]. 西安: 长安大学, 2016.
XIONG Fan. Research of TBM excavation efficiency prediction and rock classification based on the PSO-SVR algorithm [D]. Xi’an: Chang’an University, 2016.
[11]   罗华. 基于线性回归和深度置信网络的 TBM 性能预测研究[D]. 杭州: 浙江大学, 2018.
LUO Hua. Application of linear regression analysis and deep belief network for performance prediction of TBM [D]. Hangzhou: Zhejiang University, 2018.
[12]   杜立杰, 齐志冲, 韩小亮, 等 基于现场数据的TBM可掘性和掘进性能预测方法[J]. 煤炭学报, 2015, 40 (6): 1284- 1289
DU Li-jie, QI Zhi-chong, HAN Xiao-liang, et al Prediction method for the boreability and performance of hard rock TBM based on boring data on site[J]. Journal of China Coal Society, 2015, 40 (6): 1284- 1289
[13]   李守巨, 曹丽娟 盾构机掘进过程中的决策支持系统[J]. 信息技术, 2011, (10): 39- 42
LI Shou-jun, CAO Li-juan Decision support system in shield tunneling[J]. Information Technology, 2011, (10): 39- 42
doi: 10.3969/j.issn.1009-2552.2011.10.010
[14]   CHEN K, ZHENG Z, ZHANG Q Residual analysis in inverse identification of total thrust on shield tunneling machine[J]. Applied Mechanics and Materials, 2013, 455: 557- 560
doi: 10.4028/www.scientific.net/AMM.455.557
[15]   张娜, 李建斌, 荆留杰, 等 TBM掘进参数智能控制系统的研究与应用[J]. 隧道建设, 2018, 38 (10): 1734- 1740
ZHANG Na, LI Jian-bin, JING Liu-jie, et al Study and application of intelligent control system of TBM tunneling parameters[J]. Tunnel Construction, 2018, 38 (10): 1734- 1740
doi: 10.3973/j.issn.2096-4498.2018.10.019
[16]   YAGIZ S, GOKCEOGLU C, SEZER E, et al Application of two non-linear prediction tools to the estimation of tunnel boring machine performance[J]. Engineering Applications of Artificial Intelligence, 2009, 22 (4/5): 808- 814
[17]   JAMSHIDI A Prediction of TBM penetration rate from brittleness indexes using multiple regression analysis[J]. Modeling Earth Systems and Environment, 2018, 4 (1): 383- 394
doi: 10.1007/s40808-018-0432-2
[18]   GHASEMI E, YAGIZ S, ATAEI M Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic[J]. Bulletin of Engineering Geology and the Environment, 2014, 73 (1): 23- 35
doi: 10.1007/s10064-013-0497-0
[19]   JAVAD G, NARGES T Application of artificial neural networks to the prediction of tunnel boring machine penetration rate[J]. Mining Science and Technology (China), 2010, 20 (5): 727- 733
doi: 10.1016/S1674-5264(09)60271-4
[20]   王超, 龚国芳, 杨华勇, 等 NSVR 硬岩隧道掘进机刀盘扭矩预测分析[J]. 浙江大学学报:工学版, 2018, 52 (3): 479- 486
WANG Chao, GONG Guo-fang, YANG Hua-yong, et al NVSR based predictive analysis of cutterhead torque for hard rock TBM[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (3): 479- 486
[21]   吴煜宇, 吴湘滨, 尹俊涛 关于 TBM 施工隧洞围岩分类方法的研究[J]. 水文地质工程地质, 2006, 33 (5): 120- 122
WU Yu-yu, WU Xiang-bin, YIN Jun-tao Research with relation to rock classification of TBM Tunnels[J]. Hydrogeology and Engineering Geology, 2006, 33 (5): 120- 122
doi: 10.3969/j.issn.1000-3665.2006.05.028
[1] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[2] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[3] Yi-zhe MAO,Guo-fang GONG,Xing-hai ZHOU,Fei WANG. Identification of TBM surrounding rock based on Markov process and deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 448-454.
[4] Fa-ming HUANG,Zhong-shan CAO,Chi YAO,Qing-hui JIANG,Jia-wu CHEN. Landslides hazard warning based on decision tree and effective rainfall intensity[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 472-482.
[5] Fa-sheng MIAO,Yi-ping WU,Lin-wei LI,Kang LIAO,Yang XUE. Prediction of joint roughness coefficient of rock mass based on Boosting-decision tree C5.0[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 483-490.
[6] You-kang DUAN,Xiao-gang CHEN,Jian GUI,Bin MA,Shun-fen LI,Zhi-tang SONG. Continuous kinematics prediction of lower limbs based on phase division[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 89-95.
[7] Wei-qi CHEN,Jing-chang WANG,Ling CHEN,Yong-qin YANG,Yong WU. Prediction model of multi-factor aware mobile terminal replacement based on deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 109-115.
[8] Wen-shu LI,Tao-tao ZOU,Hong-yan WANG,Hai HUANG. Traffic accident quantity prediction model based on dual-scale long short-term memory network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1613-1619.
[9] Dong-dong JIANG,Dao-fei LI,Xiao-li YU. Model predictive control energy management based ondriver demand torque prediction[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1325-1334.
[10] Chen-lin WANG,Jie YANG,Wen-jun JU,Fu GU,Ji-xi CHEN,Yang-jian JI. Short term load forecasting and peak shaving optimization based on intelligent home appliance[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1418-1424.
[11] Xu YAN,Xiao-liang FAN,Chuan-pan ZHENG,Yu ZANG,Cheng WANG,Ming CHENG,Long-biao CHEN. Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1147-1155.
[12] Chuang LIU,Jun LIANG. Vehicle motion trajectory prediction based on attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1156-1163.
[13] Ping YANG,Dan WANG,Zi-jian KAGN,Tong LI,Li-hua FU,Yue-ren YU. Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1039-1048.
[14] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.
[15] Ya-jing WANG,Qun WANG,Bo-wen LI,Zhi-wen LIU,Yuan-yuan PIAO,Tao YU. Seizure prediction based on pre-ictal period selection of EEG signal[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2258-2265.