Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (4): 642-649    DOI: 10.3785/j.issn.1008-973X.2020.04.002
Mechanical Engineering,Electrical Engineering     
Phenomenological dynamic model on two-way shape memory effects of shape memory alloy
Fu-zai LV1(),Yu-tian HU2,Jian-jun WU1,Lin-xiang WANG2,*()
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
2. Institute of Mechanical Design, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1001KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A phenomenological dynamic model was constructed for the modeling of two-way shape memory effect in one-dimensional shape memory alloy (SMA) structure. The model was based on the phenomenological theory of thermoelastic phase transformations in SMAs. Hysteresis loops in both mechanical and thermal fields were treated as macroscopic illustrations of martensite transformations and martensite variant re-orientations. A non-convex free energy function was constructed to characterize the phase transformations induced by temperature. Then each of its local equilibriums can be used to represent a phase in the transformations. System states (strain) can be transformed upon external loadings (mechanical or thermal) from one stable equilibrium to another. Then the dynamics of phase transformations can be modeled by simulating the system state transformations. Governing equations for the transformation dynamics were formulated by employing the Lagrange's equation, and were expressed as nonlinear differential equations. One-way shape memory effect was described by a nonlinear ordinary differential equation, and the model for two-way shape memory effect was constructed by taking the weighted combination of different phase transformations. A series of numerical experiments were conducted. Phase transformations induced by both mechanical and thermal loadings were simulated. Hysteresis loops associated with both one-way shape memory effect and two-way shape memory effect under thermal loadings were presented. A single hysteresis loop associatedwith mechanical-induced martensite variant re-orientations and double hysteresis loops associated with the pseudo-elastic effects were presented. The numerical results showed that two-way shape memory effect and pseudo-elastic effect were successfully modeled, which demonstrated the capability of the current model.



Key wordshysteresis curve      dynamics      martensite transformation      two-way shape memory effects      differential equation     
Received: 03 March 2019      Published: 05 April 2020
CLC:  TH 142  
Corresponding Authors: Lin-xiang WANG     E-mail: lfzlfz@zju.edu.cn;wanglx236@zju.edu.cn
Cite this article:

Fu-zai LV,Yu-tian HU,Jian-jun WU,Lin-xiang WANG. Phenomenological dynamic model on two-way shape memory effects of shape memory alloy. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 642-649.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.04.002     OR     http://www.zjujournals.com/eng/Y2020/V54/I4/642


双程形状记忆效应的唯象动力学模型

构造可以用于描述一维结构的形状记忆合金(SMA)的双程形状记忆效应的唯象动力学模型. 该模型基于与形状记忆合金中热弹性相变有关的唯象理论,将应力场和热场下的滞回环曲线视为马氏体相变和马氏体变体重构在宏观层面上的表现. 为了模拟温度诱发的相变,构造非凸自由能函数,使得函数的每个局部平衡对应于相变过程中的一个相. 在外部负载(力或者热)的作用下,可以通过模拟系统状态(应变)在不同平衡态之间的转变,研究温度诱发的相变. 相变动力学的控制方程采用拉格朗日方程,以非线性微分方程来表示. 利用非线性常微分方程描述单程形状记忆效应,通过对不同相变过程的加权组合描述双程形状记忆效应. 开展有关力和热负载下的数值实验,模拟热和应力诱发的相变以及热负载下与单程形状记忆效应和双程形状记忆效应有关的滞回环,模拟马氏体重构所导致的单滞回环以及超弹性效应所引起的双滞回环. 从实验结果可以看出,双程形状记忆效应及超弹性效应均可以被提出的模型成功捕捉,验证了该模型的描述能力.


关键词: 滞回曲线,  动力学,  马氏体相变,  双程形状记忆效应,  微分方程 
Fig.1 Diagrammatic sketch of shape memory effect caused by martensitic transformation and martensitic transformation reconstruction
Fig.2 Martensitic transformation with concerning Landau free energy
Fig.3 Martensite transformation with different variant deviation
Fig.4 Martensite transformation with different variant deviation
Fig.5 Hysteretic loop curve of SMA phase transition induced by external force
Fig.6 Thermal hysteresis loops related to SMA two-way shape memory effect
[1]   杨杰, 吴月华. 形状记忆合金及其应用[M]. 合肥: 中国科学技术大学出版社, 1993.
[2]   李尚荣. NiTi记忆合金动态特性实验研究及其在仿生机器鱼上的应用[D]. 合肥: 中国科学技术大学, 2006.
LI Shang-rong. Experimental study on dynamic characteristics of NiTi memory alloy and its application in biomimetic robot fish [D]. Hefei: Press of University of Science and Technology of China, 2006.
[3]   BANKS H T, SMITH R C, WANG Y. Smart material structures: modeling, estimation and control [M]. Paris: Wiley, 1996.
[4]   SMITH R C, SEELECKE S, DAPINO M, et al A unified framework for modeling hysteresis in ferroic materials[J]. Journal of the Mechanics and Physics of Solids, 2006, 54 (1): 46- 85
doi: 10.1016/j.jmps.2005.08.006
[5]   CHEN Y C, LAGOUDAS D C Impact induced phase transformation in shape memory alloys[J]. Journal of the Mechanics and Physics of Solids, 2000, 48 (2): 275- 300
doi: 10.1016/S0022-5096(99)00044-7
[6]   MELNIK R V N, ROBERTS A J, THOMAS K A Coupled thermomechanical dynamics of phase transitions in shape memory alloys and related hysteresis phenomena[J]. Mechanics Research Communications, 2001, 28 (6): 637- 651
doi: 10.1016/S0093-6413(02)00216-1
[7]   TIMOFEEVA E E, LARCHENKOVA N G, PANCHENKO E Y, et al Two-way shape memory effect induced by high-temperature isothermal training in [001]-oriented heterophase single crystals of Ni49Fe18Ga27Co6 alloy[J]. Russian Physics Journal, 2018, 61 (8): 1483- 1490
doi: 10.1007/s11182-018-1560-x
[8]   KAYA E, KAYA I A review on machining of NiTi shape memory alloys: the process and post process perspective[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100: 2045- 2087
[9]   NNAMCHI P, YOUNE A, GONZALEZ S A review on shape memory metallic alloys and their critical stress for twinning[J]. Intermetalics, 2019, 105: 61- 78
doi: 10.1016/j.intermet.2018.11.005
[10]   EMIL B, EILON F, DORON S Analysis of austenite-martensite phase boundary and twinned microstructure in shape memory alloys: the role of twinning disconnections[J]. Acta Materialia, 2019, 164: 520- 529
doi: 10.1016/j.actamat.2018.11.003
[11]   FALK F Model free energy, mechanics, and thermomechanics of shape memory alloy[J]. Acta Materialia, 1980, 28 (12): 1773- 1780
doi: 10.1016/0001-6160(80)90030-9
[12]   TANAKA K, KOBAYASHI S, SATO Y Thermomechanic of transformation pseudoelasticity and shape memory effect in alloy[J]. International Journal of Plasticity, 1986, 2 (1): 59- 72
doi: 10.1016/0749-6419(86)90016-1
[13]   LIANG C, ROGERS C One-dimensional thermo-mechanical constitutive relations for shape memory material[J]. Journal of Intelligent Material Systems and Structures, 1997, 1 (2): 207- 234
[14]   BRINSON L C, LAMMERING R Finite element analysis of the behavior of shape memory alloy and their application[J]. International Journal of Solids and Structures, 1993, 30 (23): 3261- 3280
[15]   WAEL Z, ZIAD M A three-dimensional model of the thermomechanical behavior of shape memory alloys[J]. Journal of the Mechanics and Physics of Solids, 2007, 55 (11): 2455- 2490
doi: 10.1016/j.jmps.2007.03.012
[16]   SEDLAK P, FROST M Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings[J]. International Journal of Plasticity, 2012, 39: 132- 151
doi: 10.1016/j.ijplas.2012.06.008
[17]   YU Chao, KANG Guo-cheng, KAN Qian-zheng study on the rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy based on a new crystal plasticity constitutive model[J]. International Journal of Solids and Structures, 2014, 51 (25/26): 4386- 4405
doi: 10.1016/j.ijsolstr.2014.09.006
[18]   YU Chao, KANG Guo-cheng, KAN Qian-zheng Rate dependent cyclic deformation of super-elastic NiTi shape memory alloy: thermo-mechanical coupled and physical mechanism-based constitutive model[J]. International Journal of Plasticity, 2015, 72: 60- 90
doi: 10.1016/j.ijplas.2015.05.011
[19]   XI Xie, GUO Zheng-kang Phase field modeling for cyclic phase transition of NiTi shape memory alloy single crystal with super-elasticity[J]. Computational Materials Science, 2018, 143: 212- 224
doi: 10.1016/j.commatsci.2017.11.017
[20]   YAO Xiao, PAN Zeng, LI Ping-lei Micromechanical modeling on thermomechanical coupling of cyclically deformed superelastic NiTi shape memory alloy[J]. International Journal of Plasticity, 2018, 107: 164- 188
doi: 10.1016/j.ijplas.2018.04.003
[21]   FALK F Driven domain walls in shape memory alloys[J]. Journal of Physics C: Solid State Physics, 1987, 20 (17): 2501
doi: 10.1088/0022-3719/20/17/005
[22]   WANG Lin-xiang, MELNIK R V N Thermo-mechanical wave propagation in shape memory alloy rod with phase transformations[J]. Journal of Mechanics of Advanced Materials and Structures, 2007, 14 (8): 665- 676
doi: 10.1080/15376490701673227
[23]   WANG Lin-xiang, MELNIK R V N Numerical model for vibration damping resulting from the first order phase transformations[J]. Applied Mathematical Modeling, 2007, 31 (9): 2008- 2018
doi: 10.1016/j.apm.2006.08.019
[24]   NIEZGODKA M, SPREKELS J Convergent numerical approximations of the thermomechanical phase transitions in shape memory alloys[J]. Numerische Mathematik, 1991, 58: 759- 778
[25]   BUBNER N, MACKIN G, ROGERS R C Rate dependence of hysteresis in one-dimensional phase transitions[J]. Computational Materials Science, 2000, 18 (3/4): 245- 254
doi: 10.1016/S0927-0256(00)00103-8
[26]   YAZDANDOOST F, MIRZAEIFAR R Stress wave and phase transformation propagation at the atomistic scale in NiTi shape memory alloys subjected to shock loadings[J]. Shape Memory and Superelasticity, 2018, 4 (4): 435- 449
doi: 10.1007/s40830-018-0189-5
[1] Huan-long LIU,Chi-xin XIE,Da-fa LI,Jia-wei WANG. Flow field distribution of splash lubrication of gearbox and churning gear torque loss[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 875-886.
[2] Yu ZHANG,Yi-cai LIU. Progress in two-phase flow-induced noise of small scale refrigeration system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 775-792.
[3] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[4] Wei-da LI,Juan LI,Xiang LI,Hong-miao ZHANG,Hong GU,Yi-peng SHI,Hao-jie ZHANG,Li-ning SUN. Dynamic analysis and parameter optimization of under-actuated heterogeneous lower limb rehabilitation robot[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 222-228.
[5] Jing LI,Chen WANG,Jia-xu ZHANG. Wheel slip tracking control of vehicle based on adaptive fast terminal sliding mode control method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 169-176.
[6] Hua-qing MA,Yong-zhi ZHAO. CFD-DEM investigation on mixing of rod-like particles in spout-fluid bed[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1347-1354.
[7] Kai-ming HU,Hua LI. Nonlinear stochastic optimal voltage bounded control for axial compressed beam[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 940-946.
[8] Dao-sheng LING,Qi-xi JIANG,Yu ZHAO. Numerical simulation of entrainment effect of debris flow considering entraining substrate material[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2067-2075.
[9] Shuai ZHENG,Da-peng TAN,Lin LI,Yin-long ZHU. Ultrasonic coupled microreactor CFD-DEM dynamic modeling and regulating method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1237-1251.
[10] Hao ZHOU,Kun ZHANG,Ya-wei LI,Jia-kai ZHANG. Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1139-1147.
[11] Yong-xiang GAO,Du HONG,You-wei CHENG,Li-jun WANG,Xi LI. Experimental and numerical simulation on sequential three phase jet-loop reactor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 997-1005.
[12] Feng CHENG,Dong ZHANG,Shuo TANG. Aerodynamics/propulsion coupled modeling and analysis of hypersonic vehicle within wide speed range[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 1006-1018.
[13] Hang-hui HU,Zheng-zhi DENG,Yan-ming YAO,Xi-zeng ZHAO. Theoretical and numerical studies of off-shore oscillating water column wave energy device[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 325-335.
[14] Yan-ning LU,Hong-tao ZHANG,Yan-wei XU,Yan-qun ZHU,Kai-di WAN,Zhe-ru SHAO,Zhi-hua WANG. Numerical simulation of effects of flue gas recirculation on biomass combustion in grate boiler[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1898-1906.
[15] Shi-tang KE,Wen-lin YU,Lu XU,Ling-yun DU,Wei YU,Qing YANG. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1936-1945.