Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (10): 1936-1945    DOI: 10.3785/j.issn.1008-973X.2019.10.011
Civil Engineering     
Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction
Shi-tang KE1,3(),Wen-lin YU2,Lu XU1,Ling-yun DU1,Wei YU1,Qing YANG3
1. Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. Jiangsu Power Design Institute Limited Company, China Energy Engineering Group, Nanjing 211102, China
3. Jiangsu Key Laboratory of Hi-Tech Research for Wind Turbine Design, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Download: HTML     PDF(2058KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The wind field of wind turbine considering 6 yaw angles (0, 5, 10, 20, 30 and 45 degrees) under the worst blade stop position was simulated based on computational fluid dynamics (CFD) method in order to analyze the flow field characteristics and aerodynamic performance of large-scale wind turbines under complex operating conditions in severe storms and rainstorms. A 5 MW wind turbine researched independently by Nanjing University of Aeronautics and Astronautics was taken as an example. The discrete phase model (DPM) was added and the wind-rain coupling synchronous iterative calculation was conducted. Then the effects of different yaw angles on the characteristics of wind field and rain field around wind turbines were analyzed. The new models of wind-rain equivalent pressure coefficient were constructed, and corresponding calculation formulas were presented. The equivalent pressure coefficient of tower and blades were systematically analyzed for different yaw angles conditions under wind and rain interaction. Results show that the effect of additional rain load on the pressure on the windward side of the blade and the 40 degrees on both sides of the windward side of the tower cannot be neglected.



Key wordswind -rain interaction      wind turbine      yaw effect      computational fluid dynamics (CFD)      flow field characteristics      aerodynamic load     
Received: 29 May 2018      Published: 30 September 2019
CLC:  TK 83  
Cite this article:

Shi-tang KE,Wen-lin YU,Lu XU,Ling-yun DU,Wei YU,Qing YANG. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1936-1945.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.10.011     OR     http://www.zjujournals.com/eng/Y2019/V53/I10/1936


风雨下考虑偏航效应风力机流场及气动载荷

为了研究狂风暴雨环境中大型风力机在复杂工况下的流场特性和气动性能,以南京航空航天大学自主研发的5 MW风力机塔架-叶片体系为例,采用计算流体动力学(CFD)技术开展最不利叶片停机位置下考虑6个偏航角(0°、5°、10°、20°、30°和45°)影响的风力机风场模拟,添加离散相模型(DPM)开展风-雨耦合同步迭代计算,对比研究不同偏航角对风力机周围风场和雨场特性的影响规律. 建立不同偏航角下的风-雨等效压力系数新模型,给出相应的公式,针对风雨作用下的不同偏航角工况塔架和叶片表面等效压力系数进行系统分析. 研究结果表明,附加雨荷载效应对该类风力机叶片迎风面和塔架迎风面两侧各40°区域内压力的影响不容忽视.


关键词: 风雨共同作用,  风力机,  偏航效应,  计算流体动力学(CFD),  流场特性,  气动载荷 
参数 数值 叶片三维模型 整机三维模型
塔架高度 124 m
塔顶半径 3.0 m
塔底半径 3.5 m
塔顶厚度 0.04 m
塔底厚度 0.09 m
叶片长度 60 m
Tab.1 Structure parameters and model of 5 MW large wind turbine
Fig.1 Actual and equivalent wind direction planforms of wind turbine under yaw states
Fig.2 Diagrams of computational domain and mesh generation
Dp / mm ΔD/mm Dp / mm ΔD/mm
1 0~1.5 4 3.5~4.5
2 1.5~2.5 5 4.5~5.5
3 2.5~3.5 6 5.5~6.0
Tab.2 Groupings of raindrop diameters
Fig.3 Contrast diagrams between CFD numerical simulation results and code values under wind field
Fig.4 Wind pressure coefficient distribution on typical sections of tower of different conditions
Fig.5 Velocity streamline distribution on typical interference sections of tower of different conditions
Fig.6 Vorticity distribution on typical interference sections of tower of different conditions
Fig.7 Distribution curves of raindrop number and horizontal velocity on tower and blade surfaces of different conditions
Fig.8 Rain load distribution on different height surfaces of tower and blades of different conditions
Fig.9 Raindrops on wind turbine surfaces of different conditions
Fig.10 Rain pressure coefficient distribution on typical sections of tower of different conditions
Fig.11 Comparison curves of rain pressure coefficient of blades of different conditions
Fig.12 Curves of equivalent pressure coefficient on typical sections of tower of different conditions
Fig.13 Comparison curves of equivalent pressure coefficient of blades of different conditions
[1]   JEONG M S, KIM S W, LEE I, et al The impact of yaw error on aeroelastic characteristics of a horizontal axis wind turbine blade[J]. Renewable Energy, 2013, 60 (5): 256- 268
[2]   叶昭良, 王晓东, 康顺 水平轴风力机偏航气动性能分析[J]. 工程热物理学报, 2018, 39 (5): 985- 991
YE Zhao-liang, WANG Xiao-dong, KANG Shun Analysis of yaw aerodynamic performance of horizontal axis wind turbine[J]. Journal of Engineering Thermophysics, 2018, 39 (5): 985- 991
[3]   WANG Q, ZHOU H, WAN D Numerical simulation of wind turbine blade-tower interaction[J]. Journal of Marine Science and Application, 2012, 11 (3): 321- 327
doi: 10.1007/s11804-012-1139-9
[4]   KE S T, YU W, WANG T G, et al Wind loads and load-effects of large scale wind turbine tower with different halt positions of blade[J]. Wind and Structures, An International Journal, 2016, 23 (6): 559- 575
doi: 10.12989/was.2016.23.6.559
[5]   KEEGAN M H, NASH D H, STACK M M. Modelling rain drop impact of offshore wind turbine blades [C]// ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Copenhagen, Denmark: ASME, 2012: 887-898.
[6]   许德福, 孙文磊, 樊军 定风速下偏航失控和叶轮过速时的塔架载荷分析[J]. 可再生能源, 2011, 29 (5): 24- 27
XU De-fu, SUN Wen-lei, FAN Jun Analysis of the tower load during the control of the drift of uncontrollable and impeller in wind speed[J]. Renewable Energy, 2011, 29 (5): 24- 27
[7]   STAINO A, BASU B Dynamics and control of vibrations in wind turbines with variable rotor speed[J]. Engineering Structures, 2013, 56 (6): 58- 67
[8]   周文平, 唐胜利 水平轴风力机稳定偏航气动性能计算[J]. 太阳能学报, 2011, 32 (9): 1315- 1320
ZHOU Wen-ping, TANG Sheng-li Horizontal axis wind turbine stability and yaw aerodynamic performance calculation[J]. Acta Energiae Solaris Sinica, 2011, 32 (9): 1315- 1320
[9]   江波, 史萌萌, 李奕 风轮偏航对风力机气动性能数值模拟分析研究[J]. 电网与清洁能源, 2014, 30 (3): 123- 127
JIANG Bo, SHI Meng-meng, LI Yi Numerical simulation analysis of aerodynamic performance of wind turbines[J]. Power Grid and Clean Energy, 2014, 30 (3): 123- 127
[10]   廖明夫, 黄巍, 董礼, 等 风力机偏航引起的失稳振动[J]. 太阳能学报, 2009, 30 (4): 488- 492
LIAO Ming-fu, HUANG Wei, DONG Li, et al Instability vibration caused by yaw of wind turbine[J]. Acta Energiae Solaris Sinica, 2009, 30 (4): 488- 492
[11]   柯世堂, 王同光 偏航状态下风力机塔架-叶片耦合结构气弹响应分析[J]. 振动与冲击, 2015, 34 (18): 33- 38
KE Shi-tang, WANG Tong-guang Analysis of the air missile response of the wind turbine tower - blade coupling structure[J]. Journal of Vibration and Shock, 2015, 34 (18): 33- 38
[12]   于淼. 低矮建筑风雨作用效应的数值与实测研究[D]. 杭州: 浙江大学, 2013.
YU Miao. Numerical and experimental study on wind and rain effect of low-rise buildings [D]. Hangzhou: Zhejiang University, 2013.
[13]   王剑, 毕继红, 何旭辉, 等 风雨激振中斜拉索倾角对水线及拉索振动的影响[J]. 振动工程学报, 2018, 31 (1): 57- 66
WANG Jian, BI Ji-hong, HE Xu-hui, et al Effect of inclined angle of inclined cable on vibration of water line and cable during rain-induced vibration[J]. Journal of Vibration Engineering, 2018, 31 (1): 57- 66
[14]   孙芳锦, 王岩露, 冯旭, 等 风雨联合作用下风向对大跨度悬挑屋盖的压力分布影响研究[J]. 防灾减灾工程学报, 2018, 38 (3): 542- 547
SUN Fang-jin, WANG Yan-lu, FENG Xu, et al Effect of wind and rain on pressure distribution of large-span cantilever roof[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38 (3): 542- 547
[15]   周超, 李力, 刘衍平 分裂输电导线风雨致振机理及分析模型[J]. 噪声与振动控制, 2017, 37 (1): 49- 52
ZHOU Chao, LI Li, LIU Yan-ping Mechanism and analysis model of wind and rain induced vibration of split transmission conductor[J]. Noise and Vibration Control, 2017, 37 (1): 49- 52
[16]   毕继红, 乔浩玥, 关健, 等 带有纵向肋条斜拉索的风雨激振减振机理研究[J]. 工程力学, 2018, 35 (4): 168- 175
BI Ji-hong, QIAO Hao-yue, GUAN Jian, et al Study on the mechanism of rain-induced vibration reduction with longitudinal rib stay[J]. Engineering Mechanics, 2018, 35 (4): 168- 175
[17]   王修勇, 蒋乾超, 孙洪鑫, 等 斜拉桥拉索风雨激振参数联合概率分布模型[J]. 土木工程学报, 2017, 50 (10): 69- 74
WANG Xiu-yong, JIANG Qian-chao, SUN Hong-xin, et al Combined probability distribution model of rain-wind induced vibration parameters of cable-stayed bridges[J]. China Civil Engineering Journal, 2017, 50 (10): 69- 74
[18]   陈博文. 低矮房屋表面风雨压力CFD数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2009.
CHEN Bo-wen. Numerical simulation of wind and rain pressure on low building surface [D]. Harbin: Harbin Institute of Technology, 2009.
[19]   MCFARQUHAR G M, LIST R The raindrop mean free path and collision rate dependence on rainrate for three-peak equilibrium and Marshall-Palmer distributions[J]. Journal of the Atmospheric Sciences, 2010, 48 (3): 1999- 2004
[20]   董辉, 高乾丰, 邓宗伟, 等 大型风力机风雨荷载特性数值研究[J]. 振动与冲击, 2015, 34 (15): 17- 22
DONG Hui, GAO Qian-feng, DENG Zong-wei, et al Large wind turbine wind load characteristics of the numerical study[J]. Journal of Vibration and Shock, 2015, 34 (15): 17- 22
[1] Huan-long LIU,Chi-xin XIE,Da-fa LI,Jia-wei WANG. Flow field distribution of splash lubrication of gearbox and churning gear torque loss[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 875-886.
[2] Ren-qiang XI,Xiu-li DU,Pi-guang WANG,Cheng-shun XU,Kun XU. Integrated seismic response of monopile supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 757-766.
[3] Qi CHEN,Dan-yang LI,Hong-wei LIU,Yong-gang LIN,Wei LI,Jing-long DING. Load simulation technology for ground test system of wind turbine drive chain[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 299-306.
[4] Hao-yu WU,Yong-sheng ZHAO,Yan-ping HE,Wen-gang MAO,Jie YANG,Xiao-li GU,Chao HUANG. Transient response analysis of tension-leg-platformfloating offshore wind turbine under tendon failure conditions[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2196-2203.
[5] Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.
[6] Wen-jie ZHOU,Li-zhong WANG,Lv-jun TANG,Zhen GUO,Sheng-jie RUI,Yu-pei HUANG. Numerical analysis of dynamic responses of jacket supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1431-1437.
[7] Hao ZHOU,Kun ZHANG,Ya-wei LI,Jia-kai ZHANG. Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1139-1147.
[8] Yong-xiang GAO,Du HONG,You-wei CHENG,Li-jun WANG,Xi LI. Experimental and numerical simulation on sequential three phase jet-loop reactor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 997-1005.
[9] Wen-hao XU,Zhan QIU,Bo-ping YU,Fu-xin WANG. Numerical simulation on flow field characteristics of a double-layer counter-rotating vertical axis wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2223-2230.
[10] Yan-ning LU,Hong-tao ZHANG,Yan-wei XU,Yan-qun ZHU,Kai-di WAN,Zhe-ru SHAO,Zhi-hua WANG. Numerical simulation of effects of flue gas recirculation on biomass combustion in grate boiler[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1898-1906.
[11] ZHANG Xin, ZHANG Tian-hang, HUANG Zhi-yi, ZHANG Chi, KANG Cheng, WU Ke. Local loss and flow characteristic of dividing flow in bifurcated tunnel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 440-445.
[12] CHEN Wei, QIN Xian-rong, YANG Zhi-gang. Wind load characteristics analysis of mast and jib of tower crane[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2262-2270.
[13] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.
[14] YUAN Ren-yu, LUO Kun, WANG Jian-wen, JI Wen-ju, ZHANG Li-ru, WANG Qiang, FAN Jian-ren. Numerical simulation of wind turbine operation control under dynamic inflow condition[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2128-2135.
[15] ZHOU Tao, HE Yan-ping, MENG Long, ZHAO Yong-sheng. Motion response analysis of a new 6 MW Spar-type floating offshore wind turbine using coupled simulations[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1864-1873.