Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (12): 2262-2270    DOI: 10.3785/j.issn.1008-973X.2018.12.003
Mechanical Engineering     
Wind load characteristics analysis of mast and jib of tower crane
CHEN Wei1, QIN Xian-rong1, YANG Zhi-gang1,2
1. School of Mechanical Engineering, Tongji University, Shanghai 201804, China;
2. Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai 201804, China
Download:   PDF(1189KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The expression of wind load coefficient was defined. The computational fluid dynamics (CFD) numerical simulation of the tower crane in twelve wind angles under uniform and B category flow field was completed. The shape coefficient, the skewed wind coefficient and the wind pressure height coefficient of the tower mast and jib were calculated and compared with the design of different countries. Results show that the crosswind load of mast could be ignored under different wind angles, while the wind load of jib must be considered; the calculation method of the skewed wind coefficient for the mast is consistent with the design of steel structures in European standard, while it differs greatly with the design rules for cranes of China, thus it is effective to define the skewed wind coefficient of mast by the European standard; the skewed wind coefficient of the jib and mast is not sensitive to the different categories of wind flow fields; the influence of the aerodynamic shape of the tower crane makes the wind pressure height coefficient inconsistent under different wind direction angles, showing the amplification effect. The characteristics of the wind load coefficient can provide reference to the wind-resistant design.



Received: 23 September 2017      Published: 13 December 2018
CLC:  TU312  
Cite this article:

CHEN Wei, QIN Xian-rong, YANG Zhi-gang. Wind load characteristics analysis of mast and jib of tower crane. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2262-2270.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.12.003     OR     http://www.zjujournals.com/eng/Y2018/V52/I12/2262


塔式起重机塔身和起重臂的风载荷特征分析

定义风载荷系数表达式,完成塔机在均匀风场和B类风场下12个风向角的计算流体力学(CFD)数值计算,得到塔身和起重臂的体型系数、角度风系数和风压高度变化系数,并与国内外规范进行对比.结果表明:不同风向角下,塔身横风向风载荷可以忽略,而起重臂的横向风载荷必须考虑;塔身角度风系数计算方法与欧洲钢结构设计规范一致,但与我国起重机设计规范相差较大,建议以欧洲规范定义塔身角度风系数;塔身和起重臂角度风系数对风场特征不敏感;塔机气动外形的影响使得风压高度变化系数在不同风向角下不一致并表现出放大效应.塔机抗风设计可参考风载荷系数参数特征.

[1] SOLAZZI L, ZRNIC N. Numerical study of wind actions applied to a low profile container crane[J]. FME Transactions, 2016, 44(1):29-35.
[2] BAYAR D C. Drag coefficients of latticed towers[J]. Journal of Structural Engineering, 1986, 112(2):417-430.
[3] 沈国辉, 项国通, 邢月龙, 等. 2种风场下格构式圆钢塔的天平测力试验研究[J]. 浙江大学学报:工学版, 2014, 48(4):704-710 SHEN Guo-hui, XIANG Guo-tong, XING Yue-long, et al. Experimental investigation of steel latticed towers with cylindrical members based on force balance tests under two wind flows[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(4):704-710
[4] EDEN J F, BUTLER A J, PATIENT J. Wind tunnel tests on model crane structures[J]. Engineering Structures, 1983, 5(4):289-298.
[5] 党会学, 赵均海, 张宏杰, 等. 三角形格构式塔身体型系数及屏蔽特性研究[J]. 计算力学学报, 2016, 33(3):362-368 DANG Hui-xue, ZHAO Jun-hai, ZHANG Hong-jie, et al. Study on shape coefficient and shielding effects of triangular latticed tower body[J]. Chinese Journal of Computational Mechanics, 2016, 33(3):362-368
[6] 谢华平, 何敏娟, 马人乐. 基于CFD模拟的格构塔平均风荷载分析[J]. 中南大学学报:自然科学版, 2010, 41(5):1980-1986 XIE Hua-ping, HE Min-juan, MA Ren-le. Analyse of mean wind load of lattice tower based on CFD simulation[J]. Journal of Central South University:Science and Technology, 2010, 41(5):1980-1986
[7] NAKAYAMA A, KAMOTO D, TAKEDA H, et al. Large-eddy simulation of flows past complex truss structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(3):133-144.
[8] GB/T 3811-2008. 起重机设计规范[S]. 北京:中国国家标注化管理委员会, 2008.
[9] ISO 4302-2016. Cranes-Wind load assessment[S]. Switz-erland:International Organization for Standardization, 2016.
[10] BS EN 1993-3-1:2006. Eurocode 3:Design of steel structures-part 3-1:towers, masts and chimneys-Towers and masts[S]. Brussel:European Committee for Standardization, 2006.
[11] ASCE7-05:2006. Minimum design loads for buildings and other structures[S]. Reston:American Society of Civil Engineers, 2006.
[12] JIS B 8830-2001. Cranes:Wind load assessment[S]. Tokyo:Japanese Industrial Standards Committee, 2001.
[13] AS/NZS 1170.2:2011. Structural Design Actions-Part 2:Wind actions[S]. Sydney:SAI Global Limited, 2011.
[14] BLOCKEN B. 50 years of computational wind engineering:past, present and future[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 129(6):69-102.
[15] LOHNER R, HAUG E, MICHALSKI A, et al. Recent advances in computational wind engineering and fluid-structure interaction[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 144:14-23.
[16] User's Guild:NBC-2005. Structural commentaries (part 4 of division B)[S]. Ottawa:National Building Code of Canada, 2005.
[17] AIJ-RLB-2004. Recommendations for loads on buildings[S]. Maruzen:Architectural Institute of Japan, 2004.
[18] BS EN 1991-1-4:2005. Eurocode 1:Actions on structures-part 1-4:General actions-Wind actions[S]. Brussel:European Committee for Standardization, 2005.
[19] 孙远, 马人乐, 邱旭. 三边形桅杆杆身风载荷特性风洞实验研究[J]. 湖南大学学报:自然科学版, 2017, 44(1):39-46 SUN Yuan, MA Ren-le, QIU Xu. Wind tunnel investigation on wind load characteristics of triangular guyed mast[J]. Journal of Hunan University:Natural Sciences, 2017, 44(1):39-46
[20] 张庆华, 马文勇. 多回路高压输电塔典型横担结构风力系数风洞试验研究[J]. 振动与冲击, 2016, 35(16):158-163 ZHANG Qin-hua, MA Wen-yong. Experimental study of wind force coefficients on typical cross arms of a multi-circuit high-voltage transmission tower[J]. Journal of Vibration and Shock, 2016, 35(16):158-163
[21] YANG F L, YANG J B, NIU H W, et al. Design wind loads for tubular-angle steel cross-arms of transmission towers under skewed wind loading[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 140:10-18.
[22] 杨风利. 角钢输电铁塔横担角度风荷载系数取值研究[J]. 工程力学, 2017, 34(4):150-159 YANG F L. Study on skewed wind load factor on cross-arms of angle steel transmission towers under skewed wind[J]. Engineering Mechanics, 2017, 34(4):150-159
[23] YANG F L, DANG H X, NIU H W, et al. Wind tunnel tests on wind loads acting on an angled steel triangular transmission tower[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 156:93-103.
[24] SCHEWE G, LARSEN A. Reynolds number effects in the flow around a bluff bridge deck cross section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, s74-76(2):829-838.

[1] XIA Yong-qiang, XIAO Nan. Initial rotational stiffness formula of semi-rigid joint with T-stub in beam-to-column connection[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1935-1942.
[2] WANG Hai-long, ZHU Yu-qi, XIA Jin, SUN Xiao-yan. Effect of composite connectors on bond performance between steel tube and concrete[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1107-1113.
[3] ZHANG Yang, SHEN Guo-hui, YU Shi-ce, MA Yu-cong, ZHANG Rui. Experimental study on aeolian noise generated by transmission lines using wind tunnel testing[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(8): 1494-1499.