Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (4): 775-792    DOI: 10.3785/j.issn.1008-973X.2021.04.021
    
Progress in two-phase flow-induced noise of small scale refrigeration system
Yu ZHANG(),Yi-cai LIU*()
School of Energy Science and Engineering, Central South University, Changsha 410083, China
Download: HTML     PDF(5371KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Progress in flow-induced noise of refrigerant was systematically reviewed. The analysis of two-phase flow theory shows that time gradient of the pressure drop is the root cause of flow-induced noise. Flow pattern significantly influences on the pressure drop, and the fluctuation of pressure drop causes vibration and noise along the pipeline. The cavitation dynamics shows that bubble size and shape change are influenced by the flow pattern, and the change of acoustic characteristics is represented. The influence of various factors on flow-induced noise was described from the aspects of thermodynamics and the structure of pipeline and throttling element. Effective methods for suppressing two-phase flow-induced noise were comprehensively compared. Researching methods of two-phase flow-induced noise were summarized from experimental and numerical simulation. Future interest will be focused on the quantitative research of flow-induced noise, and correlations will be proposed based on the characteristic parameters for the noise. Noise suppression methods will be proposed for the guideline of optimal design for refrigeration system.



Key wordstwo-phase flow      flow pattern map      throttling      flow-induced noise      cavitation dynamics     
Received: 11 July 2020      Published: 07 May 2021
CLC:  TB 651  
Fund:  国家自然科学基金资助项目(51776226)
Corresponding Authors: Yi-cai LIU     E-mail: zhangyu19@csu.edu.cn;lyccsu@csu.edu.cn
Cite this article:

Yu ZHANG,Yi-cai LIU. Progress in two-phase flow-induced noise of small scale refrigeration system. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 775-792.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.04.021     OR     http://www.zjujournals.com/eng/Y2021/V55/I4/775


小型制冷系统两相流致噪声研究进展

系统地回顾了制冷剂两相流致噪声研究的主要进展. 两相流理论研究表明,流致噪声的根本原因是压力降随时间的变化,流型对压力降的变化有显著影响,压力降的波动会引起管道的振动和噪声. 空泡动力学理论指出流型会影响气泡尺寸和形状,表现出声学特性的变化. 从热力学效应、管系和节流元件结构等方面出发,阐述各因素对流致噪声的影响,综合比较两相流致噪声抑制手段的效果. 从实验和数值模拟2个方面,概述了两相流致噪声研究方法的发展. 展望了两相流致噪声研究的发展方向,可以通过评价噪声特性的关键指标参数,系统地考察特征参数对流致噪声的影响,提出噪声抑制措施,未来指导制冷系统的优化设计.


关键词: 两相流,  流型图,  节流,  流致噪声,  空泡动力学 
Fig.1 Schematic of flow patterns in horizontal pipe and vertical pipe[7]
Fig.2 Separated model of two-phase flow
Fig.3 Control volume of momentum equation of separated two-phase flow
Fig.4 Comparison of estimated noise between noise pattern and flow pattern[12]
Fig.5 Noise suppression effect with porous metal[14]
Fig.6 Flow pattern variation and sound pressure level on pattern map(top)and flow images(bottom)near EEV for horizontal pipe layout[15]
Fig.7 Comparison of sound pressure level affected by flow conditioners[16]
文献 制冷剂 主要结论
文献[9] R22 ●建立制冷剂流型与噪声间的关系
●膨胀阀进口处制冷剂为单相时,能够有效地降低噪声
文献[11] 空气-水 ●弹状流产生的噪声较大
●噪声声压级取决于毛细管末端气体膨胀引起的压力脉动大小
文献[67] R600A ●环状流或波状流产生的噪声声压级较小
●弹状流和乳沫状流产生的噪声声压级较大
●乳沫状流产生的噪声是最嘈杂的
文献[12] R600A ●环形流的噪声声压级并非总比其他流型的小
●提出无量纲参数RINL用于评价噪声
●建立评价冰箱制冷剂流致噪声模式图
文献[14] R410A ●上游多孔金属可以将塞状流转为泡状流;
●下游多孔金属可以降低制冷剂流速
文献[15, 16] R410A ●弹状流、乳沫状流的噪声声压级明显较大
●流型对噪声的影响远超过管排布方式
●采用蜂巢或多孔金属结构的流动调节器能够有效地抑制流致噪声
文献[17] R600A ●间歇流:流体诱发的压力脉冲导致非稳态噪声激励
●非间歇流:均匀的噪声激励与两相流的气相速度密切相关,给出经验关联式
Tab.1 Literature review on flow-induced noise based on two-phase flow theory
Fig.8 Relationship between sound pressure and kinetic pressure of vapor flow[17]
Fig.9 Circular-cylinder shaped bubble(Taylor bubble)
Fig.10 Variation of noise with flow rate and bubble length[23]
文献 研究对象 制冷剂 主要结论
文献[21] 蒸发器出口段 R600A ●瞬态过程中制冷剂的迁移对蒸发器出口段瞬态噪声影响较大
●稳态噪声频率与式(11)计算结果相吻合
文献[22] 蒸发器入口段 R600A ●首次提出泰勒气泡的固有频率公式
●实验发现了2种气泡噪声:一是较大气泡通过孔板时破裂而产生,二是长圆柱形气泡沿轴向振荡时产生
文献[23] 电子膨胀阀 空气-水 ●单个气泡的前端和末端通过小孔时,均会出现噪声增大现象
●静压脉动值和噪声声压级受制冷剂质量流量的影响较大,受气泡长度的影响较小
文献[24] 毛细管 R600A ●毛细管出口制冷剂流动状态的改变是噪声激励的主要原因
●毛细管出口的塞状流观察到了典型的泰勒气泡,测得的频率与式(15)的计算结果相吻合
Tab.2 Literature review on flow-induced noise based on cavitation dynamics
Fig.11 Pressure-enthalpy diagram of general refrigeration cycle
Fig.12 Effect of circulation characteristics on noise[30]
Fig.13 Sound pressure levels as function of vapor quality and vapor velocity[17]
Fig.14 Mass flow and sound pressure level as function of evaporation temperature[17]
Fig.15 Effect of compression ratio on noise of air conditioner indoor unit[31]
Fig.16 Effect of pipe layout on flow-induced noise[9]
Fig.17 Modified design of evaporator-inlet pipe and noise results[7]
Fig.18 Effect of pipe layout on flow-induced noise[12]
Fig.19 Refrigeration system with transition pipe[35]
文献 制冷剂 主要结论
文献[9] R22 ●制冷剂垂直上升流入膨胀阀将出现弹状流
●水平流入方式能够有效降低低频噪声声压级
文献[7] R600A ●蒸发器入口垂直管道中的流型更可能是乳沫状流
●蒸发器进口管为水平布置时,制冷剂流致噪声声压级远小于竖直布置时的噪声声压级
文献[15] R410A ●膨胀阀前垂直布管引起的噪声声压级小于水平布管(与冰箱空调系统的结论相反)
文献[34] R600A ●制冷剂在毛细管进口处的理想全液相状态很难实现
文献[35] R600A ●采用直管过渡结构连接毛细管和蒸发器,能够明显抑制毛细管射流噪声
文献 [36] R134A ●增加管道壁厚能够有效地减小高频噪声沿着管道结构的传播
Tab.3 Literature review on influence of pipe layout on flow-induced noise
Fig.20 Flow-induced noise in short-tube orifice[37]
Fig.21 Effect of EEV structural parameters on flow-induced noise[25]
噪声抑制方法 文献 具体措施 Lp / dB 制冷剂
改变管路或节流件的结构 文献[9] 电子膨胀阀入口管水平布置 5 R22
文献[6] 减小蒸发器入口管直径 2~10 R22
文献[25] 改变电子膨胀阀喷孔长度 6 R410A
文献[25] 改变电子膨胀阀喷孔进口扩口角度 3 R410A
文献[25] 改变电子膨胀阀喷孔出口扩口角度 1 R410A
文献[1] 改进毛细管过渡管结构 3 R600A
文献[14] 在电子膨胀阀的上、下游安装多孔金属 13 R410A
采用流动调节器 文献[16] 采用蜂巢结构的流动控制器 10~20 R410A
文献[16] 采用多孔金属结构的流动控制器 5~15 R410A
Tab.4 Summary of suppression effect of flow-induced noise in small scale refrigerators
Fig.22 Signals comparison of different measurements by pressure transducer,accelerometer and microphone[36]
Fig.23 Numerical methods of flow induced noises[42]
Fig.24 Variation of sound power level with different opening of control valve[46]
Fig.25 Contours of turbulent kinetic energy and noise sound pressure level with different opening of EEV[25]
[1]   刘永辉, 刘益才, 尹凤福, 等 基于内部流动抑制的小型家用制冷设备降噪技术研究[J]. 振动与冲击, 2017, 36 (15): 152- 157
LIU Yong-hui, LIU Yi-cai, YIN Feng-fu, et al Noise reduction technique for small type household refrigerators based on refrigerant flow suppression[J]. Journal of Vibration and Shock, 2017, 36 (15): 152- 157
[2]   仇颖, 李红旗 全封闭制冷压缩机噪声研究的现状与特点[J]. 家电科技, 2005, (12): 48- 50
QIU Ying, LI Hong-qi Present situation of noise reduction research of hermetic compressor[J]. Household Appliance Technology, 2005, (12): 48- 50
doi: 10.3969/j.issn.1672-0172.2005.12.021
[3]   PARK J I, BILAL N, ADAMS D E Gas pulsation reductions in a multi cylinder compressor suction manifold using valve-to-valve mass flow rate phase shifts[J]. Journal of Vibration and Acoustics, 2007, 129 (4): 406- 416
doi: 10.1115/1.2748457
[4]   OH H E, PARK D J, JEONG W B Numerical and experimental study on the reduction of refrigerant pressure pulsation within compressor pipes[J]. Journal of Sound and Vibration, 2019, 438: 506- 519
doi: 10.1016/j.jsv.2018.09.040
[5]   徐济鋆, 贾斗南. 沸腾传热与气液两相流[M]. 2版. 北京: 原子能出版社, 2001: 46-72.
[6]   HAN H S, JEONG W B, KIM M S, et al Analysis of the root causes of refrigerant-induced noise in refrigerators[J]. Journal of Mechanical Science and Technology, 2009, 23 (12): 3245- 3256
doi: 10.1007/s12206-009-0918-y
[7]   HAN H S, JEONG W B, KIM M S, et al Reduction of the refrigerant-induced noise from the evaporator-inlet pipe in a refrigerator[J]. International Journal of Refrigeration, 2010, 33 (7): 1478- 1488
doi: 10.1016/j.ijrefrig.2010.05.014
[8]   阎昌琪. 气液两相流[M]. 3版. 哈尔滨: 哈尔滨工程大学出版社, 2017: 38-64.
[9]   UMEDA T, NAKAMURA S, OGUNI K, et al Reduction of noise caused by gas-liquid two-phase refrigerant flow through an expansion valve (in Japanese)[J]. Transactions of the Japan Society of Mechanical Engineers: Series B, 1993, 59 (557): 243- 248
doi: 10.1299/kikaib.59.243
[10]   UMEDA T, NAKAMURA H, OOTSUKA A, et al Reduction of refrigerant flow noise in residential air conditioners during energy-saving cycle-heating dehumidification operation (in Japanese)[J]. Transactions of the Japan Society of Mechanical Engineers: Series B, 2000, 66 (641): 141- 149
doi: 10.1299/kikaib.66.141
[11]   TATSUMI K Study on noise caused by slug flow through a capillary tube (in Japanese)[J]. Transactions of the Japan Society of Mechanical Engineers: Series B, 1997, 64 (611): 2392- 2397
[12]   KIM M S, JEONG W B, HAN H S Development of noise pattern map for predicting refrigerant-induced noise in refrigerators[J]. Journal of Mechanical Science and Technology, 2014, 28 (9): 3499- 3510
doi: 10.1007/s12206-014-0810-2
[13]   TAITEL Y, DUKLER A E A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J]. American Institute of Chemical Engineers Journal, 1976, 22 (2): 47- 55
[14]   SATOSHI H, MASAHIRO N, HIROAKI M, et al. Noise reduction technology with porous metal for refrigerant two-phase flow through the expansion valve [C]// 10th International Refrigeration and Air Conditioning Conference. Purdue: IRAC, 2004: 713-720.
[15]   KIM G J, LEE J H, PARK J H, et al Flow visualization and noise measurement of R410A two-phase flow near electric expansion valve for heating cycle of multi-split air-source heat pump[J]. Applied Thermal Engineering, 2019, 157: 113712
doi: 10.1016/j.applthermaleng.2019.113712
[16]   KIM G J, SONG S Noise reduction of refrigerant two-phase flow using flow conditioners near the electric expansion valve[J]. Journal of Mechanical Science and Technology, 2020, 34 (2): 719- 725
doi: 10.1007/s12206-020-0118-3
[17]   RUEBELING J, GROHMANN S Flow-induced noise generation at the outlet of a capillary tube[J]. International Journal of Refrigeration, 2020, 111: 188- 196
doi: 10.1016/j.ijrefrig.2019.11.021
[18]   吴业正, 朱瑞琪, 曹小林, 等 毛细管内制冷剂的综合成核理论与模型[J]. 西安交通大学学报, 2002, 36 (7): 661- 664
WU Ye-zheng, ZHU Rui-qi, CAO Xiao-lin, et al Combined nucleation theory and models for refrigerant flow in a capillary tube[J]. Journal of Xi’an Jiaotong University, 2002, 36 (7): 661- 664
doi: 10.3321/j.issn:0253-987X.2002.07.001
[19]   MINNAERT M On musical air bubbles and the sound of running water[J]. Philosophical Magazine Series 7, 1933, 16 (104): 235- 248
doi: 10.1080/14786443309462277
[20]   STRASBERG M Gas bubbles as source of sound in liquids[J]. Journal of the Acoustical Society of America, 1956, 28 (1): 20- 27
doi: 10.1121/1.1908212
[21]   CELIK S, NSOFOR E C Studies on the flow-induced noise at the evaporator of a refrigerating system[J]. Applied Thermal Engineering, 2011, 31 (14/15): 2485- 2493
[22]   HAN H S, JEONG W B, KIM M S, et al Frequency characteristics of the noise of R600a refrigerant flowing in a pipe with intermittent flow pattern[J]. International Journal of Refrigeration, 2011, 34 (6): 1497- 1506
doi: 10.1016/j.ijrefrig.2011.04.004
[23]   UMEDA T, FUKUSHIMA T, NAKAMURA S, et al Noise caused by gas-liquid two-phase flow with single large gas bubble through an orifice (in Japanese)[J]. Transactions of the Japan Society of Mechanical Engineers: Series B, 1994, 60 (574): 1928- 1935
doi: 10.1299/kikaib.60.1928
[24]   TANNERT T, HESSE U. Noise effects in capillary tubes caused by refrigerant flow [C]// 16th International Refrigeration and Air Conditioning Conference. Purdue: IRAC, 2016: 1562-1572.
[25]   黄皓. 电子膨胀阀节流噪声数值模拟[D]. 杭州: 浙江理工大学, 2015.
HUANG Hao. Numerical simulation of throttling noise of electronic expansion valve [D]. Hangzhou: Zhejiang Sci-Tech University, 2015.
[26]   HIRAKUNI S Noise reduction technology caused by refrigerant two-phase flow for room air-conditioner[J]. Japanese Journal of Multiphase Flow, 2004, 18 (1): 23- 30
[27]   SINGH G M, RODARTE E, MILLER N R, et al. Noise generation from expansion devices in refrigerant: ACRC TR-152 [R]. Urbana, Illinois: University of Illinois, 1999.
[28]   SINGH G M, RODARTE E, MILLER N R, et al. Prediction of noise generated by expansion devices throttling refrigerant: ACRC TR-163 [R]. Urbana, Illinois: University of Illinois, 2000.
[29]   SINGH G M, RODARTE E, MILLER N R, et al. Modification of a standard aeroacoustic valve noise model to account for friction and two-phase flow: ACRC TR-162 [R]. Urbana, Illinois: University of Illinois, 2000.
[30]   JEONG W B, HAN H S, MO J Y, et al Experimental study of the effects of the cycle characteristics on the refrigerant-induced noise in system air-conditioner[J]. Journal of Mechanical Science and Technology, 2007, 21 (7): 1112- 1119
doi: 10.1007/BF03027661
[31]   陈绍林, 吴俊鸿, 段亮 空调系统制冷剂压力脉动产生的噪声分析及对策[J]. 制冷与空调, 2011, 11 (2): 49- 52
CHEN Shao-lin, WU Jun-hong, DUAN Liang Noise analysis and solutions for air-conditioning system due to refrigerant pressure fluctuation[J]. Refrigeration and Air-conditioning, 2011, 11 (2): 49- 52
doi: 10.3969/j.issn.1009-8402.2011.02.012
[32]   HEWITT G F, ROBERTS D N. Studies of two-phase flow patterns by simultaneous X-ray and flash photography: AERE-M2159 [R]. Harwell, Berkshire: Atomic Energy Research Establishment, 1969.
[33]   OSHINOWO T, CHARLES M E Vertical two-phase flow; Part1: flow pattern correlations[J]. Canadian Journal of Chemical Engineering, 1974, 52 (1): 25- 35
[34]   HARTMANN D, MELO C. An experimental study on the capillary tube flow and its effect on the acoustic behavior of household refrigerators [C]// 15th International Refrigeration and Air Conditioning Conference. Purdue: IRAC, 2014: 1367-1378.
[35]   XIA Yu-bo, LIU Yong-hui, LIU Yi-cai, et al Experimental study on reducing the noise of horizontal household freezers[J]. Applied Thermal Engineering, 2014, 68 (1/2): 107- 114
[36]   ZHANG Y Y, ELBEL S. Experimental analysis to mitigate flow induced noise in expansion devices [C]// 17th International Refrigeration and Air Conditioning Conference. Purdue: IRAC, 2018: 1862-1872.
[37]   FUCHS H V Generation and control of noise in water supply installation. Part 2: sound source mechanisms[J]. Applied Acoustics, 1993, 38: 59- 85
doi: 10.1016/0003-682X(93)90041-4
[38]   杨智辉. 冰箱制冷系统流动噪声的研究及抑制[D]. 长沙: 中南大学, 2007.
YANG Zhi-hui. Research on the noise of flowing and its suppression in the refrigerating system of the refrigerator [D]. Changsha: Central South University, 2007.
[39]   MILKIE J A, GARIMELLA S, MACDONALD M P Flow regimes and void fractions during condensation of hydrocarbons in horizontal smooth tubes[J]. International Journal of Heat and Mass Transfer, 2016, 92: 252- 267
doi: 10.1016/j.ijheatmasstransfer.2015.08.017
[40]   FANG Li-de, LIANG Yu-jiao, LU Qing-hua, et al Flow noise characterization of gas-liquid two-phase flow based on acoustic emission[J]. Measurement, 2013, 46 (10): 3887- 3897
doi: 10.1016/j.measurement.2013.07.032
[41]   FANG Li-de, ZENG Qiao-qiao, FARAJ Y, et al Analysis of chaos characteristics of gas liquid two-phase flow noise[J]. Flow Measurement and Instrumentation, 2019, 65: 98- 109
doi: 10.1016/j.flowmeasinst.2018.11.008
[42]   郭荣. 射流离心泵非定常流动与声学响应特性研究[D]. 兰州: 兰州理工大学, 2019.
GUO Rong. Research on unsteady flow and its acoustic response characteristics in jet centrifugal pump [D]. Lanzhou: Lanzhou University of Technology, 2019.
[43]   王春旭, 吴崇建, 陈乐佳, 等 流致噪声机理及预报方法研究综述[J]. 中国舰船研究, 2016, 11 (1): 57- 71
WANG Chun-xu, WU Chong-jian, CHEN Le-jia, et al A comprehensive review on the mechanism of flow-induced noise and related prediction methods[J]. Chinese Journal of Ship Research, 2016, 11 (1): 57- 71
doi: 10.3969/j.issn.1673-3185.2016.01.008
[44]   ZHANG Nan, XIE Hua, WANG Xing, et al Computation of vortical flow and flow induced noise by large eddy simulation with FW-H acoustic analogy and Powell vortex sound theory[J]. Journal of Hydrodynamics, 2016, 28 (2): 255- 266
doi: 10.1016/S1001-6058(16)60627-3
[45]   王春旭. 水下湍射流及壁面湍流噪声预报方法[D]. 武汉: 华中科技大学, 2009.
WANG Chun-xu. Research on noise prediction of submerged jets and turbulent boundary layer [D]. Wuhan: Huazhong University of Science and Technology, 2009.
[46]   王世鹏. 调节阀空化与噪声数值模拟研究[D]. 兰州: 兰州理工大学, 2018.
WANG Shi-peng. Numerical simulation of control valve cavitation and noise [D]. Lanzhou: Lanzhou University of Technology, 2018.
[47]   张坻, 李孔清, 王嘉, 等 气液两相流噪声数值模拟[J]. 矿业工程研究, 2017, 32 (1): 71- 78
ZHANG Chi, LI Kong-qing, WANG Jia, et al Numerical simulation of gas-liquid two-phase flow noise[J]. Mineral Engineering Research, 2017, 32 (1): 71- 78
[48]   陆亮. 液压节流阀中的空化流动与噪声[D]. 杭州: 浙江大学, 2012.
LU Liang. Cavitating flow and noise in hydraulic throttling valves [D]. Hangzhou: Zhejiang University, 2012.
[49]   朱明明, 黄彪, 王国玉, 等 非定常空化流致噪声的数值模拟[J]. 排灌机械工程学报, 2017, 35 (11): 933- 940
ZHU Ming-ming, HUANG Biao, WANG Guo-yu, et al Numerical investigation on noise induced by unsteady cavitating flow over hydrofoil[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35 (11): 933- 940
[50]   LIU Ji-ming, ZHANG Tao, ZHANG Yong-ou Numerical study on flow-induced noise for a steam stop-valve using large eddy simulation[J]. Journal of Marine Science and Application, 2013, 12 (3): 351- 360
doi: 10.1007/s11804-013-1195-9
[51]   韩铁礼, 潘德阔, 贾尚帅, 等 动车组司机室空调蒸发器气动噪声数值仿真[J]. 计算机辅助工程, 2019, 28 (4): 15- 20
HAN Tie-li, PAN De-kuo, JIA Shang-shuai, et al Numerical simulation on aerodynamic noise of air conditioning evaporator of EMU cab[J]. Computer Aided Engineering, 2019, 28 (4): 15- 20
[52]   林竹, 吴空 变频电子膨胀阀空调冷媒流动异音分析研究[J]. 家电科技, 2012, (11): 78- 79
LIN Zhu, WU Kong Research of abnormal refrigerant flow sound through EEV in inverter air-conditioner[J]. Journal of Appliance Science and Technology, 2012, (11): 78- 79
doi: 10.3969/j.issn.1672-0172.2012.11.032
[53]   孙敬龙, 丁龙辉, 张海鹏, 等 家用冰箱制冷剂流动噪音机理与控制研究[J]. 制冷技术, 2019, 39 (4): 63- 67
SUN Jing-long, DING Long-hui, ZHANG Hai-peng, et al Study on mechanism and control of noise of refrigerant flow in household refrigerator[J]. Chinese Journal of Refrigeration Technology, 2019, 39 (4): 63- 67
doi: 10.3969/j.issn.2095-4468.2019.04.205
[1] Jing-zhi ZHANG,Wu-kai CHEN,Nai-xiang ZHOU,Li LEI,Fu-shun LIANG. Experiment study on formation and length of droplets in T-junction microchannels[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1007-1013.
[2] Yu-qi HUANG,Zhuo-lie CHEN,Jun-qiang HU,Mei LI,Hao-yi NIU. Visual simulation of two-phase flow oscillating flow in piston cooling gallery[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 435-441.
[3] Yu ZHANG,Kai-lin ZHANG,Yuan YAO. Impact of rotating and thermal effects on leakage performance of gearbox with axial labyrinth seal[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1656-1662.
[4] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.
[5] HU Xiao dong, GU Lin yi, ZHANG Fan meng. High-speed on/off valves applied in digital displacement motor[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1551-1560.
[6] DONG Kang, ZHOU Hao, YANG Yu, WANG Ling-li, CEN Ke-fa. Influence of mass flow rate of secondary air on gas/solid flow characteristics of a swirl burner[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2162-2171.
[7] GAN Zhi-hua, WANG Bo, LIU Dong-li, WANG Ren-zhuo, ZHANG Xue-jun. Status and development trends of
space mechanical refrigeration system at liquid helium temperature
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2160-2177.
[8] ZHOU Hao, WU Jian-bo, YANG Yv, LI Ya-peng, HU Shan-tao, CEN Ke-fa. Experimental measurement of gas-solid two-phase flow of
a swirl burner by optical wave method
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2189-2193.
[9] TUN Hua-Cheng, WANG Fu, PU Shi-Liang, PU Xin-Guo, YUAN Tian-Fu, CHEN Ling-Gong, CEN Ge-Fa. Particle identification and location measurement in digital
inline holography
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 765-770.
[10] WANG Yong, KONG Lian-Wei, GUO Ai-Guo, BAI Wei. Effects of gas release rate on gaswater migration in
shallow gas reservoir
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1883-1889.
[11] YAN Jian-Hua, LIU E-Na, LI Xiao-Dong, et al. Degradation of methyl violet solution by gas-liquid gliding arc discharge under different carrier gases[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 931-936.
[12] YIN Dun-Lian, JIAO Lei, CHOU Xing-Qi, et al. Numerical and experimental investigation of flow in swirling nozzle[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 968-972.