The flow of rod-like particles in a spout-fluid bed was simulated by computational fluid dynamics/discrete element method (CFD-DEM), with rod-like particles being modeled by super-ellipsoids. The impacts of fluidization gas velocity, spout gas velocity and particle shape on the flow and mixing of rod-like particles were analyzed. The simulation results showed that the flow behaviors of rod-like particles in a spout-fluid bed basically accorded with the typical spout characteristics. Increasing fluidization gas velocity and spout gas velocity both can improve particle mixing, and the fluidization gas velocity has more effect on the particle mixing than the spout gas velocity does. The impact of particle shape on the particle mixing is mainly realized through the factors of consistency of particle orientation that is quantified by the proposed method and interlock between rod-like particles, so that the mixing degree decreases firstly and then increases with the particle aspect ratio.
Hua-qing MA,Yong-zhi ZHAO. CFD-DEM investigation on mixing of rod-like particles in spout-fluid bed. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1347-1354.
Fig.3Comparisons of flow patterns between simulations and experiments
us/(m·s?1)
H/m
实验值
模拟值
0.7
0.309±0.020
0.291±0.028
1.0
0.346±0.039
0.358±0.057
Tab.4Comparisons of bed heights between CFD-DEM simulations and corresponding experiments
Fig.4Snapshots of flow patterns for Rod 2 and Rod 4 at different gas velocities
Fig.5Variation of mixing index with time for Rod 3 at different gas velocities
Fig.6Time-averaged particle velocity during 2-10 s
Fig.7Variation of mixing index with respect to time at B-gas velocity for particles with different shapes
Fig.8Schematic diagram of divided subcells in spout-fluid bed
Fig.9Quantification of consistency of particle orientation
[1]
张勇, 金保升, 钟文琪 喷动气固流化床颗粒混合规律的实验研究[J]. 中国电机工程学报, 2008, 28 (20): 8- 12 ZHANG Yong, JIN Bao-sheng, ZHONG Wen-qi Experimental investigation on particle mixing in spout-fluid bed[J]. Proceedings of the CSEE, 2008, 28 (20): 8- 12
doi: 10.3321/j.issn:0258-8013.2008.20.002
[2]
张勇, 金保升, 钟文琪, 等 喷动流化床颗粒混合特性的三维直接数值模拟[J]. 中国电机工程学报, 2008, 28 (2): 33- 38 ZHANG Yong, JIN Bao-sheng, ZHONG Wen-qi, et al Three-dimensional DEM simulation on particle mixing characteristics of spout-fluid bed[J]. Proceedings of the CSEE, 2008, 28 (2): 33- 38
doi: 10.3321/j.issn:0258-8013.2008.02.006
[3]
ANDERSON T B, JACKSON R Fluid mechanical description of fluidized beds[J]. Industrial and Engineering Chemistry Fundamentals, 1967, 6 (4): 527- 539
doi: 10.1021/i160024a007
[4]
TSUJI Y, KAWAGUCHI T, TANAKA T Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77 (1): 79- 87
doi: 10.1016/0032-5910(93)85010-7
[5]
XU B, YU A Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics[J]. Chemical Engineering Science, 1997, 52 (16): 2785- 2809
doi: 10.1016/S0009-2509(97)00081-X
[6]
CUNDALL P A, STRACK O D A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29 (1): 47- 65
doi: 10.1680/geot.1979.29.1.47
[7]
周池楼, 赵永志 离散单元法及其在流态化领域的应用[J]. 化工学报, 2014, 65 (7): 2520- 2534 ZHOU Chi-lou, ZHAO Yong-zhi Discrete element method and its applications in fluidization[J]. CIESC Journal, 2014, 65 (7): 2520- 2534
doi: 10.3969/j.issn.0438-1157.2014.07.014
[8]
ZHU H, ZHOU Z, YANG R, et al Discrete particle simulation of particulate systems: a review of major applications and findings[J]. Chemical Engineering Science, 2008, 63 (23): 5728- 5770
doi: 10.1016/j.ces.2008.08.006
[9]
LU G, THIRD J, MüLLER C Discrete element models for non-spherical particle systems: from theoretical developments to applications[J]. Chemical Engineering Science, 2015, 127: 425- 465
doi: 10.1016/j.ces.2014.11.050
[10]
ZHONG W, YU A, LIU X, et al DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications[J]. Powder Technology, 2016, 302: 108- 152
doi: 10.1016/j.powtec.2016.07.010
[11]
ZHAO Y, XU L, UMBANHOWAR P B, et al Discrete element simulation of cylindrical particles using super-ellipsoids[J]. Particuology, 2019, 46: 55- 66
doi: 10.1016/j.partic.2018.04.007
[12]
MA H, XU L, ZHAO Y CFD-DEM simulation of fluidization of rod-like particles in a fluidized bed[J]. Powder Technology, 2017, 314: 355- 366
doi: 10.1016/j.powtec.2016.12.008
[13]
HOPKINS M A Polyhedra faster than spheres?[J]. Engineering Computations, 2014, 31 (3): 567- 583
doi: 10.1108/EC-09-2012-0211
[14]
NING Z, BOEREFIJN R, GHADIRI M, et al Distinct element simulation of impact breakage of lactose agglomerates[J]. Advanced Powder Technology, 1997, 8 (1): 15- 37
doi: 10.1016/S0921-8831(08)60477-X
[15]
KODAM M, BHARADWAJ R, CURTIS J, et al Cylindrical object contact detection for use in discrete element method simulations. Part I: contact detection algorithms[J]. Chemical Engineering Science, 2010, 65 (22): 5852- 5862
doi: 10.1016/j.ces.2010.08.006
[16]
CAI J, LI Q, YUAN Z Orientation of cylindrical particles in gas-solid circulating fluidized bed[J]. Particuology, 2012, 10 (1): 89- 96
doi: 10.1016/j.partic.2011.03.012
[17]
OSCHMANN T, VOLLMARI K, KRUGGEL-EMDEN H, et al Numerical investigation of the mixing of non-spherical particles in fluidized beds and during pneumatic conveying[J]. Procedia Engineering, 2015, 102: 976- 985
doi: 10.1016/j.proeng.2015.01.220
[18]
REN B, ZHONG W, JIANG X, et al Numerical simulation of spouting of cylindroid particles in a spouted bed[J]. The Canadian Journal of Chemical Engineering, 2014, 92 (5): 928- 934
doi: 10.1002/cjce.21900
[19]
ZHONG W Q, ZHANG Y, JIN B S, et al Discrete element method simulation of cylinder-shaped particle flow in a gas-solid fluidized bed[J]. Chemical Engineering and Technology, 2009, 32 (3): 386- 391
doi: 10.1002/ceat.200800516
[20]
NAN W, WANG Y, WANG J Numerical analysis on the fluidization dynamics of rodlike particles[J]. Advanced Powder Technology, 2016, 27 (5): 2265- 2276
doi: 10.1016/j.apt.2016.08.015
[21]
VOLLMARI K, OSCHMANN T, WIRTZ S, et al Pressure drop investigations in packings of arbitrary shaped particles[J]. Powder Technology, 2015, 271: 109- 124
doi: 10.1016/j.powtec.2014.11.001
[22]
VOLLMARI K, JASEVI?IUS R, KRUGGEL-EMDEN H Experimental and numerical study of fluidization and pressure drop of spherical and non-spherical particles in a model scale fluidized bed[J]. Powder Technology, 2016, 291: 506- 521
doi: 10.1016/j.powtec.2015.11.045
[23]
OSCHMANN T, HOLD J, KRUGGEL-EMDEN H Numerical investigation of mixing and orientation of non-spherical particles in a model type fluidized bed[J]. Powder Technology, 2014, 258: 304- 323
doi: 10.1016/j.powtec.2014.03.046
[24]
MAHAJAN V V, NIJSSEN T M J, KUIPERS J A M, et al Non-spherical particles in a pseudo-2D fluidised bed: modelling study[J]. Chemical Engineering Science, 2018, 192: 1105- 1123
doi: 10.1016/j.ces.2018.08.041
[25]
MA H, ZHAO Y CFD-DEM investigation of the fluidization of binary mixtures containing rod-like particles and spherical particles in a fluidized bed[J]. Powder Technology, 2018, 336: 533- 545
doi: 10.1016/j.powtec.2018.06.034
[26]
MA H, ZHAO Y, CHENG Y CFD-DEM modeling of rod-like particles in a fluidized bed with complex geometry[J]. Powder Technology, 2019, 344: 673- 683
doi: 10.1016/j.powtec.2018.12.066
[27]
CUI H, GRACE J R Spouting of biomass particles: a review[J]. Bioresource Technology, 2008, 99 (10): 4008- 4020
doi: 10.1016/j.biortech.2007.04.048
[28]
LIU X, ZHONG W, JIANG X, et al Spouting behaviors of binary mixtures of cylindroid and spherical particles[J]. AIChE Journal, 2015, 61 (1): 58- 67
doi: 10.1002/aic.14636
[29]
LIU X, ZHONG W, YU A, et al Mixing behaviors in an industrial-scale spout-fluid mixer by 3D CFD-TFM[J]. Powder Technology, 2017, 314: 455- 465
doi: 10.1016/j.powtec.2016.10.046
[30]
ZHANG Y, ZHONG W, JIN B Experimental investigation on the translational and rotational motion of biomass particle in a spout-fluid bed[J]. International Journal of Chemical Reactor Engineering, 2013, 11: 453- 468
doi: 10.1515/ijcre-2013-0067
[31]
MA H, ZHAO Y Investigating the flow of rod-like particles in a horizontal rotating drum using DEM simulation[J]. Granular Matter, 2018, 20 (3): 41
doi: 10.1007/s10035-018-0823-0
[32]
ZHAO Y, JIANG M, LIU Y, et al Particle-scale simulation of the flow and heat transfer behaviors in fluidized bed with immersed tube[J]. AIChE Journal, 2009, 55 (12): 3109- 3124
doi: 10.1002/aic.11956
[33]
XU L, ZHANG Q, ZHENG J, et al Numerical prediction of erosion in elbow based on CFD-DEM simulation[J]. Powder Technology, 2016, 302: 236- 246
doi: 10.1016/j.powtec.2016.08.050
[34]
ZHAO Y, XU L, ZHENG J CFD-DEM simulation of tube erosion in a fluidized bed[J]. AIChE Journal, 2017, 63: 418- 437
doi: 10.1002/aic.15398
[35]
YOU Y, LIU M, MA H, et al Investigation of the vibration sorting of non-spherical particles based on DEM simulation[J]. Powder Technology, 2018, 325: 316- 332
doi: 10.1016/j.powtec.2017.11.002
[36]
ZHU H, ZHOU Z, YANG R, et al Discrete particle simulation of particulate systems: theoretical developments[J]. Chemical Engineering Science, 2007, 62 (13): 3378- 3396
doi: 10.1016/j.ces.2006.12.089
[37]
XU B H, YU A B, CHEW S J, et al Numerical simulation of the gas-solid flow in a bed with lateral gas blasting[J]. Powder Technology, 2000, 109 (1–3): 13- 26
[38]
DI FELICE R The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow, 1994, 20 (1): 153- 159
doi: 10.1016/0301-9322(94)90011-6
[39]
H?LZER A, SOMMERFELD M New simple correlation formula for the drag coefficient of non-spherical particles[J]. Powder Technology, 2008, 184 (3): 361- 365
doi: 10.1016/j.powtec.2007.08.021
[40]
ZHAO Y, DING Y, WU C, et al Numerical simulation of hydrodynamics in downers using a CFD-DEM coupled approach[J]. Powder Technology, 2010, 199 (1): 2- 12
doi: 10.1016/j.powtec.2009.04.014
[41]
MAHAJAN V V, PADDING J T, NIJSSEN T M, et al Nonspherical particles in a pseudo-2D fluidized bed: experimental study[J]. AIChE Journal, 2018, 64 (5): 1573- 1590
doi: 10.1002/aic.16078
[42]
LACEY P M C Developments in the theory of particle mixing[J]. Journal of Applied Chemistry, 1954, 4 (5): 257- 268
[43]
赵永志, 张宪旗, 刘延雷, 等 滚筒内非等粒径二元颗粒体系增混机理研究[J]. 物理学报, 2009, 58 (12): 8386- 8393 ZHAO Yong-zhi, ZHANG Xian-qi, LIU Yan-lei, et al Augmenting the mixing of size-type binary granular systems in a rotating horizontal drum[J]. Acta Physica Sinica, 2009, 58 (12): 8386- 8393
doi: 10.3321/j.issn:1000-3290.2009.12.042
[44]
朱润孺, 朱卫兵, 邢力超, 等 矩形喷动床混合特性的三维数值研究[J]. 中国电机工程学报, 2010, 30 (17): 12- 16 ZHU Run-ru, ZHU Wei-bing, XING Li-chao, et al A three-dimensional numerical investigation on particle mixing characteristics in rectangular spouted beds[J]. Proceedings of the CSEE, 2010, 30 (17): 12- 16