Civil Engineering |
|
|
|
|
Prediction method of rockmass parameters based on tunnelling process of tunnel boring machine |
Na ZHANG1( ),Jian-bin LI2,*( ),Liu-jie JING1,3,Chen YANG1,Shuai CHEN1 |
1. China Railway Engineering Equipment Group Limited Company, Zhengzhou 450016, China 2. China Railway Hi-Tech Industry Corporation Limited, Beijing 400000, China 3. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China |
|
|
Abstract A prediction method of rockmass parameters was proposed based on tunnelling process of tunnel boring machine (TBM) in order to solve the problem that the rockmass parameters of tunnel face was obtained difficultly in real time during TBM construction. The variation of tunnelling parameters in the TBM construction process was analyzed supported by water supply project from Songhua River in Jilin Province. A database was established which included the tunnelling parameters of TBM and rockmass parameters, and the correlation between the rockmass parameters and the tunnelling parameters of TBM was deduced. A new relational model between rockmass and TBM was constructed based on the stepwise regression algorithm and the clustering algorithm. The uniaxial compressive strength (UCS) of rock, volumetric joint count and surrounding rockmass classification were predicted by monitoring the tunnelling parameters of TBM. The rock parameters of tunnel face in the limestone and granite strata were predicted and compared with the actual values. Results indicated that the predicted UCS and volumetric joint count had an estimated maximum error of 18%, and the evaluated comprehensively surrounding rockmass classification accorded well with the actual state of rockmass, which verified the accuracy of the research results.
|
Received: 18 July 2018
Published: 30 September 2019
|
|
Corresponding Authors:
Jian-bin LI
E-mail: znazna@163.com;lijianbin@crectbm.com
|
基于隧道掘进机掘进过程的岩体状态感知方法
针对现有技术无法预先、实时获取隧道掘进机(TBM)掌子面岩体状态参数的问题,提出基于TBM掘进过程监测的岩体状态感知方法. 以吉林引松供水工程TBM施工隧道为依托,分析TBM掘进过程中掘进参数的变化规律,建立TBM掘进参数与岩体参数数据库,研究TBM设备参数和在掘岩体参数之间的相互关系. 分别采用分步回归和聚类分析的方法建立岩机关系模型,利用监测TBM掘进参数实时感知岩石强度、体积节理数和围岩等级等参数. 以石灰岩和花岗岩地层为例,对TBM在掘岩体参数的预测值与实际值进行对比. 结果表明,利用提出的岩体状态感知方法预测的岩石抗压强度UCS和体积节理数与实际值的误差小于18%,预测当前围岩等级与实际岩体状态基本一致,验证了研究结果的准确性.
关键词:
隧道掘进机(TBM),
掘进参数,
岩体参数,
岩机关系模型,
岩体感知方法
|
|
[1] |
杜彦良, 杜立杰. 全断面岩石隧道掘进机系统原理与集成设计[M]. 武汉: 华中科技大学出版社, 2010.
|
|
|
[2] |
王梦恕, 李典璜, 张镜剑, 等. 岩石隧道掘进机(TBM)施工及工程实例[M]. 北京: 中国铁道出版社, 2004.
|
|
|
[3] |
荆留杰, 张娜, 杨晨 TBM及其施工技术在中国的发展与趋势[J]. 隧道建设, 2016, 36 (3): 331- 337 JING Liu-jie, ZHANG Na, YANG Chen Development of TBM and its construction technologies in China[J]. Tunnel Construction, 2016, 36 (3): 331- 337
doi: 10.3973/j.issn.1672-741X.2016.03.014
|
|
|
[4] |
卢瑾, 高捷, 梅稚平 岩石力学参数对TBM掘进速率影响的分析[J]. 水电能源科学, 2010, 28 (7): 44- 46 LU Jin, GAO Jie, MEI Zhi-ping Influence analysis of rock mechanical parameters on TBM penetrating rate[J]. Water Resources and Power, 2010, 28 (7): 44- 46
doi: 10.3969/j.issn.1000-7709.2010.07.013
|
|
|
[5] |
马洪素, 纪洪广 节理倾向对TBM滚刀破岩模式及掘进速率影响的试验研究[J]. 岩石力学与工程学报, 2011, 30 (1): 155- 163 MA Hong-su, JI Hong-guang Experimental study of the effect of joint orientation on fragmentation modes and penetration rate under TBM disc cutters[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (1): 155- 163
|
|
|
[6] |
尚彦军, 杨志法, 曾庆利, 等 TBM施工遇险工程地质问题分析和失误的反思[J]. 岩石力学与工程学报, 2007, 26 (12): 2404- 2411 SHANG Yan-jun, YANG Zhi-fa, ZENG Qing-li, et al Retrospective analysis of TBM accidents from its poor flexibility to complicated geological conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (12): 2404- 2411
doi: 10.3321/j.issn:1000-6915.2007.12.004
|
|
|
[7] |
刘汉东, 姜彤, 黄志全, 等. 岩体力学参数优选理论及应用[M]. 郑州: 黄河水利出版社, 2006.
|
|
|
[8] |
KAUS A, BOENING W BEAM-geoelectrical ahead monitoring for TBM-drives[J]. Geomechanics and Tunneling, 2008, 1 (5): 442- 450
doi: 10.1002/geot.v1:5
|
|
|
[9] |
BORM G, GIESE R, OTTO P, et al. Integrated seismic imaging system for geological prediction during tunnel construction [C] // Proceedings of 10th ISRM Congress. [S. l.]: ISRM, 2003: 137-142.
|
|
|
[10] |
JETSCHNY S, BOHLEN T, KURZMANN A Seismic prediction of geological structures ahead of the tunnel using tunnel surface waves[J]. Geophysical Prospecting, 2011, 59 (5): 934- 946
|
|
|
[11] |
KNEIB G, KASSEL A, LORENZ K Automatic seismic prediction ahead of the tunnel boring machine[J]. First Break, 2000, 18 (7): 295- 302
doi: 10.1046/j.1365-2397.2000.00079.x
|
|
|
[12] |
PETRONIO L, POLETTO F, SCHLEIFER A Interface prediction ahead of the excavation front by the tunnel-seismic-while-drilling (TSWD) method[J]. Geophysics, 2007, 72 (4): G39- G44
doi: 10.1190/1.2740712
|
|
|
[13] |
POLETTO F, CORUBOLO P, COMELLI P Drill-bit seismic interferometry with and without pilot signals[J]. Geophysical Prospecting, 2010, 58 (2): 257- 265
doi: 10.1111/gpr.2010.58.issue-2
|
|
|
[14] |
YUE Z Q, LEE C F, LAW K T, et al Use of HKU drilling process monitor in soil nailing in slope stabilization[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21 (11): 1685- 1690
|
|
|
[15] |
SUGAWAWA J, YUE Z Q, THAM L G, et al Weathered rock characterization using drilling parameters[J]. Canadian Geotechnical Journal, 2003, 40 (3): 661- 668
doi: 10.1139/t03-007
|
|
|
[16] |
KAHRAMAN S Correlation of TBM and drilling machine performances with rock brittleness[J]. Engineering Geology, 2002, 65 (4): 269- 283
doi: 10.1016/S0013-7952(01)00137-5
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|