Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (10): 1966-1976    DOI: 10.3785/j.issn.1008-973X.2019.10.014
Civil Engineering     
Heat transfer coefficient of passive house exterior wall in cold area
Song-tao JIN1(),Chang LIU1,Li-ying WANG1,Yang YANG2
1. School of Architecture and Design, Changchun Institute of Technology, Changchun 130021, China
2. College of Exploration and Mapping Engineering, Changchun Institute of Technology, Changchun 130021, China
Download: HTML     PDF(3300KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Starting from the differences of climatic conditions between China and Germany, the theories of thermal resistance, thermal bridge and mildewing temperature of exterior walls in four different environments were comprehensively introduced and analyzed by ISO and DIN International standards in order to analyze the heat transfer coefficients of passive exterior walls suitable for the climatic conditions in cold regions of China. Heat2 thermal bridge software was used to calculate the indoor corner temperature of the exterior wall of passive house when the German design standard for exterior wall of passive house was used in the climatic conditions of severe cold regions in China. The calculated wall corner temperature was compared with five mildew temperature points in different indoor relative humidity environments. Results showed that when the thermal resistance of the inner wall surface was 0.5 and 1.00 (m2·K)/W, the corner temperature was below the mildew temperature point. The heat transfer coefficients of the external walls under five different indoor relative humidity environments were deduced by using the mildew temperature point as the benchmark based on the climatic conditions in China. The heat transfer coefficients at 50% indoor relative humidity are the heat transfer coefficients of the external walls suitable for passive buildings in cold regions of China.



Key wordspassive house      internal wall surface thermal resistance      external wall heat transfer coefficient      corner surface temperature      indoor relative humidity      moldy temperature point     
Received: 24 October 2018      Published: 30 September 2019
CLC:  TU 201  
Cite this article:

Song-tao JIN,Chang LIU,Li-ying WANG,Yang YANG. Heat transfer coefficient of passive house exterior wall in cold area. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1966-1976.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.10.014     OR     http://www.zjujournals.com/eng/Y2019/V53/I10/1966


严寒地区被动房外墙传热系数

为了研究适用于我国严寒地区气候条件的被动房外墙传热系数,从我国严寒地区与德国气候条件的差异性入手,通过ISO和DIN等国际标准对4种不同环境下的外墙内表面热阻、热桥和发霉温度点等方面的理论进行全面介绍并分析. 运用Heat2热桥软件,计算德国被动房外墙设计标准使用在我国严寒地区气候条件时的外墙室内墙角温度. 将计算出的墙角温度与5种不同室内相对湿度环境下的发霉温度点进行对比分析. 计算结果表明,当内墙表面热阻为0.5和1.00(m2·K)/W时,墙角温度都低于发霉温度点以下. 基于我国气候条件,以发霉温度点为基准反向推导出5种不同室内相对湿度环境下的外墙传热系数,提出室内相对湿度为50%时的传热系数为适用于我国严寒地区被动房建筑的外墙传热系数.


关键词: 被动房,  内墙表面热阻,  外墙传热系数,  墙角表面温度,  室内相对湿度,  发霉温度点 
Fig.1 Schematic diagram of different thermal resistance of internal wall
Fig.2 Schematic diagram of influence of different indoor environment on surface temperature of internal wall
Fig.3 Schematic diagram of heat transfer at geometric thermal bridge
Fig.4 Distribution map of climatic zones in China
Fig.5 Heat2 software temperature and thermal bridge calculation and analysis physical model
参数 数值
室内温度 20 °C
室外最低温度 ?36.3 °C
内墙表面热阻 0.11、0.25、0.5、1 m2·K/W
钢筋混凝土导热系数 1.74 W/(m·K)
EPS保温板导热系数 0.033 W/(m·K)
Tab.1 Environmental conditions and thermal parameters of enclosure structure
rh/% θsimold/°C
40 9.3
45 11.0
50 12.6
55 14.1
60 15.4
Tab.2 Mouldy temperature points for different indoor relative humidity
θ/°C θiw/°C
R1=
0.11 m2·K/W
R2=
0.25 m2·K/W
R3=
0.5 m2·K/W
R4=
1.00 m2·K/W
?36.3 17.90 16.18 13.46 8.44
?36 17.91 16.20 13.50 8.50
?35 17.95 16.27 13.61 8.70
?34 17.99 16.34 13.73 8.91
?33 18.03 16.41 13.85 9.11
?32 18.06 16.48 13.96 9.32
?31 18.10 16.54 14.08 9.52
?30 18.14 16.61 14.19 9.73
?29 18.18 16.68 14.31 9.94
?28 18.21 16.75 14.43 10.14
?27 18.25 16.81 14.54 10.35
?26 18.29 16.88 14.66 10.55
?25 18.32 16.95 14.77 10.76
?24 18.36 17.02 14.89 10.96
?23 18.40 17.09 15.01 11.17
?22 18.44 17.15 15.12 11.37
?21 18.47 17.22 15.24 11.58
?20 18.51 17.29 15.36 11.78
?19 18.55 17.36 15.47 11.99
?18 18.59 17.42 15.59 12.19
?17 18.62 17.49 15.70 12.40
?16 18.66 17.56 15.82 12.61
?15 18.70 17.63 15.94 12.81
?14 18.73 17.70 16.05 13.02
?13 18.77 17.76 16.17 13.22
?12 18.81 17.83 16.28 13.43
?11 18.85 17.90 16.40 13.63
?10 18.88 17.97 16.52 13.84
?9 18.92 18.03 16.63 14.04
?8 18.96 18.10 16.75 14.25
?7 18.99 18.17 16.87 14.45
?6 19.03 18.24 16.98 14.66
?5 19.07 18.31 17.10 14.87
?4 19.11 18.37 17.21 15.07
?3 19.14 18.44 17.33 15.28
?2 19.18 18.51 17.45 15.48
?1 19.22 18.58 17.56 15.69
Tab.3 Wall temperature of different thermal resistance environment and outdoor temperature when external wall heat transfer coefficient is 0.15 W/(m2·K)
Fig.6 Wall temperature changes at different outdoor temperatures under four thermal resistance environments
Fig.7 Variation of heat transfer coefficient of exterior wall under different relative humidity and outdoor temperature with thermal resistance of 0.5 m2·K/W
θ/°C U/(W·m?2·K?1)
rh=40% rh=45% rh=50% rh=55% rh=60%
?36.3 0.15 0.15 0.15 0.13 0.09
?36 0.15 0.15 0.15 0.13 0.09
?35 0.15 0.15 0.15 0.13 0.10
?34 0.15 0.15 0.15 0.13 0.10
?33 0.15 0.15 0.15 0.14 0.10
?32 0.15 0.15 0.15 0.14 0.10
?31 0.15 0.15 0.15 0.14 0.11
?30 0.15 0.15 0.15 0.15 0.11
?29 0.15 0.15 0.15 0.15 0.11
?28 0.15 0.15 0.15 0.15 0.11
?27 0.15 0.15 0.15 0.15 0.12
?26 0.15 0.15 0.15 0.15 0.12
?25 0.15 0.15 0.15 0.15 0.12
?24 0.15 0.15 0.15 0.15 0.13
?23 0.15 0.15 0.15 0.15 0.13
?22 0.15 0.15 0.15 0.15 0.13
?21 0.15 0.15 0.15 0.15 0.14
?20 0.15 0.15 0.15 0.15 0.14
?19 0.15 0.15 0.15 0.15 0.15
?18 0.15 0.15 0.15 0.15 0.15
?17 0.15 0.15 0.15 0.15 0.15
?16 0.15 0.15 0.15 0.15 0.15
?15 0.15 0.15 0.15 0.15 0.15
?14 0.15 0.15 0.15 0.15 0.15
?13 0.15 0.15 0.15 0.15 0.15
?12 0.15 0.15 0.15 0.15 0.15
?11 0.15 0.15 0.15 0.15 0.15
?10 0.15 0.15 0.15 0.15 0.15
?9 0.15 0.15 0.15 0.15 0.15
?8 0.15 0.15 0.15 0.15 0.15
?7 0.15 0.15 0.15 0.15 0.15
?6 0.15 0.15 0.15 0.15 0.15
?5 0.15 0.15 0.15 0.15 0.15
?4 0.15 0.15 0.15 0.15 0.15
?3 0.15 0.15 0.15 0.15 0.15
?2 0.15 0.15 0.15 0.15 0.15
?1 0.15 0.15 0.15 0.15 0.15
Tab.4 Heat transfer coefficient of external wall under different relative humidity and outdoor temperature at 0.5 m2·K/W of internal wall thermal resistance
Fig.8 Variation of heat transfer coefficient of exterior wall under different relative humidity and outdoor temperature with thermal resistance of 1.00 m2·K/W
θ/°C U/(W·m?2·K?1)
rh=40% rh=45% rh=50% rh=55% rh=60%
?36.3 0.13 0.11 0.09 0.06 0.05
?36 0.13 0.11 0.09 0.06 0.05
?35 0.14 0.11 0.09 0.07 0.05
?34 0.14 0.11 0.09 0.07 0.05
?33 0.14 0.11 0.09 0.07 0.05
?32 0.14 0.12 0.09 0.07 0.05
?31 0.15 0.12 0.10 0.07 0.05
?30 0.15 0.12 0.10 0.07 0.05
?29 0.15 0.12 0.10 0.08 0.05
?28 0.15 0.13 0.10 0.08 0.06
?27 0.15 0.13 0.11 0.08 0.06
?26 0.15 0.13 0.11 0.08 0.06
?25 0.15 0.14 0.11 0.08 0.06
?24 0.15 0.14 0.11 0.09 0.06
?23 0.15 0.15 0.12 0.09 0.07
?22 0.15 0.15 0.12 0.09 0.07
?21 0.15 0.15 0.12 0.09 0.07
?20 0.15 0.15 0.13 0.10 0.07
?19 0.15 0.15 0.13 0.10 0.07
?18 0.15 0.15 0.14 0.10 0.08
?17 0.15 0.15 0.14 0.11 0.08
?16 0.15 0.15 0.14 0.11 0.08
?15 0.15 0.15 0.15 0.11 0.08
?14 0.15 0.15 0.15 0.12 0.09
?13 0.15 0.15 0.15 0.12 0.09
?12 0.15 0.15 0.15 0.13 0.09
?11 0.15 0.15 0.15 0.13 0.10
?10 0.15 0.15 0.15 0.14 0.10
?9 0.15 0.15 0.15 0.14 0.11
?8 0.15 0.15 0.15 0.15 0.11
?7 0.15 0.15 0.15 0.15 0.12
?6 0.15 0.15 0.15 0.15 0.12
?5 0.15 0.15 0.15 0.15 0.13
?4 0.15 0.15 0.15 0.15 0.13
?3 0.15 0.15 0.15 0.15 0.14
?2 0.15 0.15 0.15 0.15 0.15
?1 0.15 0.15 0.15 0.15 0.15
Tab.5 Heat transfer coefficient of external wall under different relative humidity and outdoor temperature at 1.00 m2·K /W of internal wall thermal resistance
U/(W·m?2·K?1 Δx/mm
0.13 245
0.11 290
0.09 360
0.06 540
0.05 650
Tab.6 Thickness of EPS insulation board under different external wall heat transfer coefficient
θ/°C U/(W·m?2·K?1
?36.3~?32 0.09
?31~?28 0.10
?27~?24 0.11
?23~?21 0.12
?20~?19 0.13
?18~?16 0.14
?15~?1 0.15
Tab.7 Lowest standard of heat transfer coefficient for passive houses in cold regions
[1]   周正楠 对欧洲" 被动房”建筑的介绍与思考[J]. 建筑学报, 2009, (5): 10- 13
ZHOU Zheng-nan Introduction and reflection on "passive room" architecture in Europe[J]. Journal of Architecture, 2009, (5): 10- 13
doi: 10.3969/j.issn.0529-1399.2009.05.003
[2]   胡莹, 赵静野 秦皇岛" 在水一方”被动房采暖季舒适度研究[J]. 建设科技, 2014, 02 (025): 72- 75
HU Ying, ZHAO Jing-ye Study on the comfort of passive housing heating season in Qinhuangdao "waterone side"[J]. Construction Technology, 2014, 02 (025): 72- 75
[3]   The passive house standard [EB/OL]. [2015-08-01]. http://www.passivhaus.org.uk/standard.jsp?Id=122.
[4]   周立军, 于立波 东北传统民居应对严寒气候技术措施的探讨[J]. 南方建筑, 2010, (6): 12- 15
ZHOU Li-jun, YU Li-bo Technical measures used intraditional residences to battlethe cold climate in the Northeast[J]. Southern Architecture, 2010, (6): 12- 15
doi: 10.3969/j.issn.1000-0232.2010.06.003
[5]   王洪涛, 刘永健 沈阳建筑大学中德节能示范工程在节能设计方面的探讨[J]. 建筑与预算, 2016, 12 (012): 50- 52
WANG Hong-tao, LIU Yong-jian Discussion on energysaving design of Sino German energy saving demonstration project in Shenyang Construction University[J]. Architecture and Budget, 2016, 12 (012): 50- 52
[6]   张小玲 我国被动式房屋的发展现状[J]. 建设科技, 2015, 15 (001): 16- 23
ZHANG Xiao-ling The development of passive house in China[J]. Construction of Science and Technology, 2015, 15 (001): 16- 23
[7]   杨丹凝, 吴迪, 刘丛红 中国被动房外围护系统研究: 以寒冷、严寒气候区被动房项目为例[J]. 建筑节能, 2017, 45 (311): 48- 56
YANG Dan-ning, WU Di, LIU Cong-hong Study on the peripheral protection system of passive housing in China: passive housing project in cold and severe climate zone[J]. Building Energy Efficiency, 2017, 45 (311): 48- 56
[8]   杨永峰. 严寒地区公共建筑被动式节能设计研究[D]. 北京: 北京建筑大学, 2017.
YANG Yong-feng. Passive energy saving design of public buildings in severe cold regions [D]. Beijing: Beijing Architecture University, 2017.
[9]   刘兆新, 姜莹 中德合作" 被动式低能耗建筑”示范项目--哈尔滨" 辰能?溪树庭院”节能技术应用[J]. 建设科技, 2013, 09 (019): 26- 27
LIU Zhao-xin, JIANG Ying Sino-German cooperation "passive low-energy building" demonstration project-Harbin "ChennengXishu courtyard" energy-saving technology application[J]. Construction of Science and Technology, 2013, 09 (019): 26- 27
[10]   陶进, 王杨洋, 任楠楠 吉林城建学院超低能耗建筑示范项目研究[J]. 建筑科学, 2017, 33 (6): 8- 14
TAO Jin, WANG Yang-yang, REN Nan-nan Research on demonstration project of ultra-low energy consumption in Jilin urban construction college[J]. Architecture Science, 2017, 33 (6): 8- 14
[11]   中国被动房网. 哈尔滨" 辰能?溪树庭院”B4楼[EB/OL]. http://www.passivehouse.org.cn/al/yhdq/.
[12]   王昭俊, 吉玉辰, 薛庆雯, 等 严寒地区被动式超低能耗住宅冬季室内环境研究[J]. 暖通空调, 2018, 48 (4): 66- 70
WANG Zhao-jun, JI Yu-chen, XUE Qing-wen, et al Study on indoor environment of passive super low energy consumption residential buildings in cold area in winter[J]. Heating Ventilating and Air Conditioning, 2018, 48 (4): 66- 70
[13]   夏晓东, 山如黛, 石铁矛 严寒地区超低能耗绿色建筑设计与实践—沈阳建筑大学中德节能示范中心项目[J]. 建设科技, 2015, 15 (015): 74- 77
XIA Xiao-dong, SHAN Ru-dai, SHI Tie-mao Design and practice of ultra-low energy consumption green architecture in severe cold area[J]. Construction of Science and Technology, 2015, 15 (015): 74- 77
[14]   张莹. 基于舒适热环境要求的办公建筑低能耗设计策略研究: 以中德节能示范屋为例[D]. 沈阳: 沈阳建筑大学, 2014.
ZHANG Ying. Study on low energy consumption design strategy of office buildings based on comfortable thermal environment requirements: a case study of China-Germany energy saving demonstration House [D]. Shenyang: Shenyang Architecture University, 2014.
[15]   万成龙, 王洪涛, 单波, 等 被动式超低能耗建筑用外窗性能实测分析[J]. 建设科技, 2015, 19 (008): 34- 36
WAN Cheng-long, WANG Hong-tao, SHAN Bo, et al Measurement and analysis of the performance of passive ultra-low energy consumption building external windows[J]. Construction of Science and Technology, 2015, 19 (008): 34- 36
[16]   邓琴琴, 宋波, 杨玉忠, 等 低能耗建筑非透明围护结构热工性能测试与分析[J]. 城市住宅, 2016, 23 (05): 41- 44
DENG Qin-qin, SONG Bo, YANG Yu-zhong, et al Thermal performance test and analysis of non-transparent enclosure structure for low energy consumption building[J]. Urban Housing, 2016, 23 (05): 41- 44
[17]   Certified European Passive House Design [EB/OL].[2018-10-01]. http://www.passivhausplaner.eu/index.php?page_id=321&level1_id=277.
[18]   民用建筑热工设计规范: GB50176-16 [S]. 北京: 中华人民共和国住房和城乡建设部.2016.
[19]   MOON H J. Assessing mold risks in buildings under uncertainty [D]. Atlanta: Georgia Institute of Technology, 2005.
[20]   《建筑设计资料集》编委会. 建筑设计资料集[M]. 北京: 中国建筑工业出版社, 2017.
[21]   THOMAS A Climate responsive and high energyefficient building[J]. Architectural Journal, 2016, (11): 113- 118
[22]   董宏, 林海燕. 新节能标准中热桥计算问题解决途径[C] // 城市化进程中的建筑与城市无力环境—第十届全国建筑物理学术会议论文集. 广州: 华南理工大学出版社, 2008: 4.
DONG Hong, LIN Hai-yan. Solution to thermal bridge calculation problem in new energy saving standard [C] // Architecture and Urban Weak Environment in the Process of Urbanization-Proceedings of the 10th National Conference on Architectural Science. Guangzhou: South China University of Technology Press, 2008: 4.
[23]   张淑红 热桥对寒区砌体结构建筑节能效果影响[J]. 低温建筑技术, 2004, (05): 89- 90
ZHANG Shu-hong Influence of thermal bridge on energy saving effect of masonry structure in cold area[J]. Low Temperature Building Technology, 2004, (05): 89- 90
doi: 10.3969/j.issn.1001-6864.2004.05.042
[24]   南艳丽, 冯雅, 谷晋川, 等 建筑热桥的数值模拟与试验研究[J]. 低温建筑技术, 2007, (03): 110- 111
NAN Yan-li, FENG Ya, GU Jin-chuan, et al Numerical simulation and experimental study of building thermal bridge[J]. Low Temperature Building Technology, 2007, (03): 110- 111
doi: 10.3969/j.issn.1001-6864.2007.03.050
[25]   孙大明, 周海珠, 田慧峰 建筑热桥研究现状与展望[J]. 建筑科学, 2010, 26 (2): 128- 134
SUN Da-ming, ZHOU Hai-zhu, TIAN Hui-feng Current situation and Prospect of building thermal bridge research[J]. Architecture Science, 2010, 26 (2): 128- 134
doi: 10.3969/j.issn.1002-8528.2010.02.025
[26]   谢晓娜, 江亿 计算建筑围护结构中热桥传热的等效平板法[J]. 清华大学学报, 2008, 48 (06): 909- 913
XIE Xiao-na, JIANG Yi Equivalent plate method for heat transfer calculation of thermal bridges in building envelope[J]. Journal of Tsinghua University, 2008, 48 (06): 909- 913
doi: 10.3321/j.issn:1000-0054.2008.06.001
[27]   WILLIAM A Heat flow through soils and effects on thermal storage cycle in high-mass structures[J]. Journal of Aerospace Engineering, 2006, 19 (01): 55- 58
doi: 10.1061/(ASCE)0893-1321(2006)19:1(55)
[28]   KNEZEVIC M, CVETKOVSKA M, TRPEVSKI S Impact of thermal insulation and type of windows on energy demand of buildings with passive house Standard[J]. Applied Mechanics and Materials, 2015, 725-726: 1519- 1529
doi: 10.4028/www.scientific.net/AMM.725-726
[29]   JEONW P, KWON G J, KIM J H, et al The study on thermal performance evaluation of building envelope with VIPs[J]. KIEAE Journal, 2016, 16 (01): 5- 10
doi: 10.12813/kieae.2016.16.1.005
[30]   牟夏阳. 现代建筑的室内装饰装修设计探究[J].住宅与房地产, 2018(2): 110.
MOU Xia-yang.Research on interior decoration and decoration of modern architecture [J]. Housing and Real Estate, 2018(2): 110.
[31]   孔凡红, 郑茂余, 白天 外保温节能墙体保温层重量湿度含量的研究[J]. 建筑节能, 2007, 35 (191): 29- 31
KONG Fan-hong, ZHENG Mao-yu, BAI Tian Study on the weight and humidity of insulation layer of external thermal insulation and energy-saving wall[J]. Building Energy Efficiency, 2007, 35 (191): 29- 31
[32]   蔡芳芳. 风机盘管加湿器对房间温湿度影响的研究 [D]. 济南: 山东建筑大学, 2010.
CAI Fang-fang. Effect of humidifier on room temperature and humidity [D]. Jinan: Shandong Architecture University, 2010.
[1] Xin-yue LI,Shu-qin CHEN,Hong-liang LI,Yun-xiao LOU,Jia-he LI. Analysis of air-conditioning usage and energy consumption in campus teaching buildings with data mining[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1677-1689.