The numerical tests of soil-rock mixture (S-RM) were performed based on the in-suit horizontal push-shear test (HPST) in order to clarify the meso-damage evolution of S-RM. The mechanical properties and the meso-damage evolution characteristics of S-RM were analyzed by using discrete element method. A quantitative evaluation method for evaluating the anisotropy of S-RM meso-cracks was proposed based on the Fourier series approximation method. The meso-damage stages of HPST of S-RM were divided based on the anisotropy evolution of meso-cracks in the process of deformation and destruction of S-RM. The formation mechanism of S-RM shear surface was analyzed by analyzing the growth and evolution of cracks in different meso-damage stages. Results showed that the anisotropy degree of meso-cracks increased with the increment of shear displacement, but it has no obvious change any more after the formation of principal crack. The dips of meso-cracks were mainly distributed in 0°-45° and 135°-180°. The generation of meso-cracks was mainly caused by the tensile stress between particles. The anisotropy degree of tensile meso-cracks was larger than that of shear meso-cracks. The connections of meso-cracks in the soil gave rise to the formation of multiple macro-cracks. The macro-cracks developed and formed a round-blocks principal crack because of the rotation of rock blocks. The S-RM slide along the principal cracked to form a round-blocks shear slide surface. The dip of slide surface was 34°, same as the dip of principal crack and the average dip of meso-cracks in the range of 0°-90°.
Han ZHANG,Xin-li HU,Shuang-shuang WU. Damage evolution of soil-rock mixture based on Fourier series approximations method. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1955-1965.
Tab.1Results of horizontal push-shear test of S-RM
Fig.4Typical limestone blocks with different grain sizes
Fig.5Cumulative grading curves of S-RM
Fig.6Simulation model of S-RM horizontal push-shear test
岩土体
dblock/mm
接触模型
Dp/mm
E/MPa
Ra
ρ/(kg·m?3)
Sn/MPa
Ss/MPa
Eb/MPa
Rb
f
块石
10~120
平行黏结
4
200
1.0
2 700
24
24
200
1.0
1.5
块石
5~10
线性接触
5~10
200
1.0
2 700
?
?
?
?
1.5
土体
?
接触黏结
2~5
10
1.0
2 500
0.17
0.17
?
?
0.5
Tab.2Meso-parameters of soil and rock blocks
Fig.7Position and dip angle of meso-cracks
Fig.8Distribution of meso-crack dip angle and fitted curve
Fig.9Evolution of horizontal force
Fig.10Slide surface of horizontal-push shear test
Fig.11Evolution of meso-cracks/energy disspation/porosity
Fig.12Evolution of meso-cracks anisotropy
Fig.13Anisotropy characteristics of meso-cracks in different stages
Fig.14Evolution of tensile meso-cracks and shear meso-cracks
Fig.15Evolution of meso-cracks in different dip angle ranges
Fig.16Evolution of meso-cracks average dip angle
Fig.17Development of macro-cracks
[1]
LINDQUIST E S. The strength and deformation properties of mélange [D]. Berkeley: University of California, 1994.
[2]
SONMEZ H, GOKCEOGLU C, MEDLEY E W, et al Estimating the uniaxial compressive strength of a volcanic bimrock[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, (43): 554- 561
[3]
董云 土石混合料强度特性的试验研究[J]. 岩土力学, 2007, 28 (6): 1269- 1274 DONG Yun Experimental study on intensity character of rock-soil aggregate mixture[J]. Rock and Soil Mechanics, 2007, 28 (6): 1269- 1274
doi: 10.3969/j.issn.1000-7598.2007.06.040
[4]
王光进, 杨春和, 张超, 等 粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J]. 岩土力学, 2009, 30 (12): 3649- 3654 WANG Guang-jin, YANG Chun-he, ZHANG Chao, et al Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics, 2009, 30 (12): 3649- 3654
doi: 10.3969/j.issn.1000-7598.2009.12.015
[5]
邓华锋, 原先凡, 李建林, 等 S-RM直剪试验的破坏特征及抗剪强度取值方法研究[J]. 岩石力学与工程学报, 2013, 32 (增2): 4065- 4072 DENG Hua-feng, YUAN Xian-fan, LI Jian-lin, et al Research on failure characteristics and determination method for shear strength of earth-rock aggregate in direct shear tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (增2): 4065- 4072
[6]
刘新荣, 涂义亮, 王林枫, 等 S-RM的剪切面分形特征及强度产生机制[J]. 岩石力学与工程学报, 2017, 36 (09): 2260- 2274 LIU Xin-rong, TU Yi-liang, WANG Lin-feng, et al Fractal characteristics of shear failure surface and mechanism of strength generation of soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (09): 2260- 2274
[7]
油新华, 汤劲松 S-RM野外水平推剪试验研究[J]. 岩石力学与工程学报, 2002, 21 (10): 1537- 1540 YOU Xin-hua, TANG Jin-song Research on horizontal push-shear in-situ test of soil and rock-mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21 (10): 1537- 1540
doi: 10.3321/j.issn:1000-6915.2002.10.021
[8]
LI X, LIAO Q L, HE J M In-situ tests and a stochastic structural model of rock andsoil aggregate in the three Gorges Reservoir area, China[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41 (3): 702- 707
[9]
徐文杰, 胡瑞林, 谭儒蛟, 等 虎跳峡龙蟠右岸S-RM野外试验研究[J]. 岩石力学与工程学报, 2006, 25 (6): 1270- 1277 XU Wen-jie, HU Rui-lin, TAN Ru-jiao, et al Study on field test of rock-soil aggregate on right bank of longpan in tiger-leaping gorge area[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (6): 1270- 1277
doi: 10.3321/j.issn:1000-6915.2006.06.028
[10]
张年学, 李晓, 赫建明, 等 无法向荷载推剪试验的解析与应用[J]. 岩土力学, 2010, 31 (03): 863- 869 ZHANG Nian-xue, LI Xiao, HE Jian-ming, et al Analysis of push shear test without normal loading and its application[J]. Rock and Soil Mechanics, 2010, 31 (03): 863- 869
doi: 10.3969/j.issn.1000-7598.2010.03.035
[11]
COLI N, BERRY P, BOLDINI D In situ non-conventional shear tests for the mechanical characterisation of a bimrock (BimTest)[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, (48): 95- 102
[12]
张晓健, 龚辉, 艾传井, 等 泥质页岩-粉质黏土土石混合填料原位水平推剪试验研究[J]. 水文地质工程地质, 2017, 44 (03): 79- 85 ZHANG Xiao-jian, GONG Hui, AI Chuan-jing, et al Research on horizontal push-shear in-situ test of pelitic shale-silty clay mixture[J]. Hydrogeology and Engineering Geology, 2017, 44 (03): 79- 85
[13]
ALESSANDRO G, CLAUDIO R, TATIANA R Characterization and DEM modeling of shear zones at a large dam foundation[J]. International Journal of Geomechanics, 2012, 12 (6): 648- 664
doi: 10.1061/(ASCE)GM.1943-5622.0000220
[14]
金磊, 曾亚武, 李欢, 等 基于不规则颗粒离散元的S-RM大三轴数值模拟[J]. 岩土工程学报, 2015, 37 (05): 829- 838 JIN Lei, ZENG Ya-wu, LI Huan, et al Numerical simulation of large-scale triaxial tests on soil-rock mixture based on DEM of irregularly shaped particles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (05): 829- 838
[15]
XU W J, HU L M, GAO W Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 166- 178
doi: 10.1016/j.ijrmms.2016.04.007
[16]
XU W J, WANG S, ZHANG H Y, et al Discrete element modelling of a soil-rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 4 (86): 141- 156
[17]
徐文杰, 王识 基于真实块石形态的S-RM细观力学三维数值直剪试验研究[J]. 岩石力学与工程学报, 2016, 35 (10): 2152- 2160 XU Wen-jie, WANG Shi Meso-mechanics of soil-rock mixture with real shape of rock blocks based on 3D numerical direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (10): 2152- 2160
[18]
ZHANG H Y, XU W J, YU Y Z Numerical analysis of soil-rock mixture’s meso-mechanics based on biaxial test[J]. Journal of Central South University, 2016, (23): 685- 700
[19]
何春灿, 胡新丽, 龚辉, 等 基于软硬石模板库的S-RM细观损伤与力学特性分析[J]. 岩土力学, 2016, 37 (10): 2993- 3002 HE Chun-can, HU Xin-li, GONG Hui, et al Analysis of mesoscopic damage and mechanical behaviors of soil-rock mixture based on template database of soft and hard rocks[J]. Rock and Soil Mechanics, 2016, 37 (10): 2993- 3002
[20]
金磊, 曾亚武 S-RM宏细观力学特性和变形破坏机制的三维离散元精细模拟[J]. 岩石力学与工程学报, 2018, 37 (06): 1- 10 JIN Lei, ZENG Ya-wu Refined simulation for macro-and meso-mechanical properties and failure mechanism of soil-rock mixture by 3-D DEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (06): 1- 10
[21]
林宗元. 岩土工程试验监测手册[M]. 北京: 中国建筑工业出版社, 2005.
[22]
BATHURST R J. A study of stress and anisotropy in idealized granular assemblies [D]. Canada: Queen's University at Kingston, 1985.
[23]
ROTHENBURG L, BATHURST R J Analytical study of induced anisotropy in idealized granular materials[J]. Geotechnique, 1989, 39 (4): 601- 614
doi: 10.1680/geot.1989.39.4.601