Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (10): 1955-1965    DOI: 10.3785/j.issn.1008-973X.2019.10.013
Civil Engineering     
Damage evolution of soil-rock mixture based on Fourier series approximations method
Han ZHANG(),Xin-li HU*(),Shuang-shuang WU
Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China
Download: HTML     PDF(1790KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The numerical tests of soil-rock mixture (S-RM) were performed based on the in-suit horizontal push-shear test (HPST) in order to clarify the meso-damage evolution of S-RM. The mechanical properties and the meso-damage evolution characteristics of S-RM were analyzed by using discrete element method. A quantitative evaluation method for evaluating the anisotropy of S-RM meso-cracks was proposed based on the Fourier series approximation method. The meso-damage stages of HPST of S-RM were divided based on the anisotropy evolution of meso-cracks in the process of deformation and destruction of S-RM. The formation mechanism of S-RM shear surface was analyzed by analyzing the growth and evolution of cracks in different meso-damage stages. Results showed that the anisotropy degree of meso-cracks increased with the increment of shear displacement, but it has no obvious change any more after the formation of principal crack. The dips of meso-cracks were mainly distributed in 0°-45° and 135°-180°. The generation of meso-cracks was mainly caused by the tensile stress between particles. The anisotropy degree of tensile meso-cracks was larger than that of shear meso-cracks. The connections of meso-cracks in the soil gave rise to the formation of multiple macro-cracks. The macro-cracks developed and formed a round-blocks principal crack because of the rotation of rock blocks. The S-RM slide along the principal cracked to form a round-blocks shear slide surface. The dip of slide surface was 34°, same as the dip of principal crack and the average dip of meso-cracks in the range of 0°-90°.



Key wordssoil-rock mixture (S-RM)      Fourier series approximations method      horizontal push-shear test      discrete element method      meso-crack      meso-damage evolution     
Received: 04 July 2018      Published: 30 September 2019
CLC:  TU 413  
Corresponding Authors: Xin-li HU     E-mail: zhanghan@cug.edu.cn;huxinli@cug.edu.cn
Cite this article:

Han ZHANG,Xin-li HU,Shuang-shuang WU. Damage evolution of soil-rock mixture based on Fourier series approximations method. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1955-1965.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.10.013     OR     http://www.zjujournals.com/eng/Y2019/V53/I10/1955


基于傅里叶近似法的S-RM细观损伤过程研究

为了明确土石混合体(S-RM)的细观损伤演化过程,基于现场水平推剪试验,采用离散元数值模拟方法,开展S-RM水平推剪数值实验研究,分析S-RM的力学特性和细观损伤演化特征. 基于傅里叶近似法,提出微裂纹各向异性定量评价方法. 根据S-RM变形破坏过程中微裂纹各向异性演化特征,划分了S-RM水平推剪细观损伤阶段,通过分析各细观损伤阶段的裂纹扩展特征及发展规律,揭示了S-RM剪切滑动面形成机理. 试验结果表明,微裂纹各向异性程度随着剪切位移的增加而增强,当主裂纹形成后不再有明显变化,微裂纹主要分布在0°~45°与135°~180°;微裂纹的产生主要由于颗粒间的拉应力导致,拉裂纹的各向异性程度明显大于剪切裂纹;土体中微裂纹的贯通导致多条宏观裂纹的形成,由于块石的翻转宏观裂纹逐渐扩展形成一条绕石宏观主裂纹,S-RM沿着主裂纹滑移形成绕石剪切滑动面;滑动面的倾角为34°,与主裂纹倾角和微裂纹在0°~90°的平均角度一致.


关键词: 土石混合体(S-RM),  傅里叶近似法,  水平推剪试验,  离散元方法,  微裂纹,  细观损伤演化过程 
Fig.1 Soil-rock mixture in field
Fig.2 In-suit horizontal push-shear test equipment
Fig.3 Shear suface of horizontal push-shear test
编号 wr/% ww/% c/kPa φ/(°)
1 57.05 12.11 19.3 61.1
2 45.60 12.10 21.2 55.6
3 37.46 10.66 23.5 51.0
4 52.40 20.50 9.7 53.5
5 42.34 19.49 11.7 46.6
6 34.52 20.37 12.5 41.1
Tab.1 Results of horizontal push-shear test of S-RM
Fig.4 Typical limestone blocks with different grain sizes
Fig.5 Cumulative grading curves of S-RM
Fig.6 Simulation model of S-RM horizontal push-shear test
岩土体 dblock/mm 接触模型 Dp/mm E/MPa Ra ρ/(kg·m?3 Sn/MPa Ss/MPa Eb/MPa Rb f
块石 10~120 平行黏结 4 200 1.0 2 700 24 24 200 1.0 1.5
块石 5~10 线性接触 5~10 200 1.0 2 700 ? ? ? ? 1.5
土体 ? 接触黏结 2~5 10 1.0 2 500 0.17 0.17 ? ? 0.5
Tab.2 Meso-parameters of soil and rock blocks
Fig.7 Position and dip angle of meso-cracks
Fig.8 Distribution of meso-crack dip angle and fitted curve
Fig.9 Evolution of horizontal force
Fig.10 Slide surface of horizontal-push shear test
Fig.11 Evolution of meso-cracks/energy disspation/porosity
Fig.12 Evolution of meso-cracks anisotropy
Fig.13 Anisotropy characteristics of meso-cracks in different stages
Fig.14 Evolution of tensile meso-cracks and shear meso-cracks
Fig.15 Evolution of meso-cracks in different dip angle ranges
Fig.16 Evolution of meso-cracks average dip angle
Fig.17 Development of macro-cracks
[1]   LINDQUIST E S. The strength and deformation properties of mélange [D]. Berkeley: University of California, 1994.
[2]   SONMEZ H, GOKCEOGLU C, MEDLEY E W, et al Estimating the uniaxial compressive strength of a volcanic bimrock[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, (43): 554- 561
[3]   董云 土石混合料强度特性的试验研究[J]. 岩土力学, 2007, 28 (6): 1269- 1274
DONG Yun Experimental study on intensity character of rock-soil aggregate mixture[J]. Rock and Soil Mechanics, 2007, 28 (6): 1269- 1274
doi: 10.3969/j.issn.1000-7598.2007.06.040
[4]   王光进, 杨春和, 张超, 等 粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J]. 岩土力学, 2009, 30 (12): 3649- 3654
WANG Guang-jin, YANG Chun-he, ZHANG Chao, et al Experimental research on particle breakage and strength characteristics of rock and soil materials with different coarse-grain contents[J]. Rock and Soil Mechanics, 2009, 30 (12): 3649- 3654
doi: 10.3969/j.issn.1000-7598.2009.12.015
[5]   邓华锋, 原先凡, 李建林, 等 S-RM直剪试验的破坏特征及抗剪强度取值方法研究[J]. 岩石力学与工程学报, 2013, 32 (增2): 4065- 4072
DENG Hua-feng, YUAN Xian-fan, LI Jian-lin, et al Research on failure characteristics and determination method for shear strength of earth-rock aggregate in direct shear tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (增2): 4065- 4072
[6]   刘新荣, 涂义亮, 王林枫, 等 S-RM的剪切面分形特征及强度产生机制[J]. 岩石力学与工程学报, 2017, 36 (09): 2260- 2274
LIU Xin-rong, TU Yi-liang, WANG Lin-feng, et al Fractal characteristics of shear failure surface and mechanism of strength generation of soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (09): 2260- 2274
[7]   油新华, 汤劲松 S-RM野外水平推剪试验研究[J]. 岩石力学与工程学报, 2002, 21 (10): 1537- 1540
YOU Xin-hua, TANG Jin-song Research on horizontal push-shear in-situ test of soil and rock-mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21 (10): 1537- 1540
doi: 10.3321/j.issn:1000-6915.2002.10.021
[8]   LI X, LIAO Q L, HE J M In-situ tests and a stochastic structural model of rock andsoil aggregate in the three Gorges Reservoir area, China[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41 (3): 702- 707
[9]   徐文杰, 胡瑞林, 谭儒蛟, 等 虎跳峡龙蟠右岸S-RM野外试验研究[J]. 岩石力学与工程学报, 2006, 25 (6): 1270- 1277
XU Wen-jie, HU Rui-lin, TAN Ru-jiao, et al Study on field test of rock-soil aggregate on right bank of longpan in tiger-leaping gorge area[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (6): 1270- 1277
doi: 10.3321/j.issn:1000-6915.2006.06.028
[10]   张年学, 李晓, 赫建明, 等 无法向荷载推剪试验的解析与应用[J]. 岩土力学, 2010, 31 (03): 863- 869
ZHANG Nian-xue, LI Xiao, HE Jian-ming, et al Analysis of push shear test without normal loading and its application[J]. Rock and Soil Mechanics, 2010, 31 (03): 863- 869
doi: 10.3969/j.issn.1000-7598.2010.03.035
[11]   COLI N, BERRY P, BOLDINI D In situ non-conventional shear tests for the mechanical characterisation of a bimrock (BimTest)[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, (48): 95- 102
[12]   张晓健, 龚辉, 艾传井, 等 泥质页岩-粉质黏土土石混合填料原位水平推剪试验研究[J]. 水文地质工程地质, 2017, 44 (03): 79- 85
ZHANG Xiao-jian, GONG Hui, AI Chuan-jing, et al Research on horizontal push-shear in-situ test of pelitic shale-silty clay mixture[J]. Hydrogeology and Engineering Geology, 2017, 44 (03): 79- 85
[13]   ALESSANDRO G, CLAUDIO R, TATIANA R Characterization and DEM modeling of shear zones at a large dam foundation[J]. International Journal of Geomechanics, 2012, 12 (6): 648- 664
doi: 10.1061/(ASCE)GM.1943-5622.0000220
[14]   金磊, 曾亚武, 李欢, 等 基于不规则颗粒离散元的S-RM大三轴数值模拟[J]. 岩土工程学报, 2015, 37 (05): 829- 838
JIN Lei, ZENG Ya-wu, LI Huan, et al Numerical simulation of large-scale triaxial tests on soil-rock mixture based on DEM of irregularly shaped particles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (05): 829- 838
[15]   XU W J, HU L M, GAO W Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 166- 178
doi: 10.1016/j.ijrmms.2016.04.007
[16]   XU W J, WANG S, ZHANG H Y, et al Discrete element modelling of a soil-rock mixture used in an embankment dam[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 4 (86): 141- 156
[17]   徐文杰, 王识 基于真实块石形态的S-RM细观力学三维数值直剪试验研究[J]. 岩石力学与工程学报, 2016, 35 (10): 2152- 2160
XU Wen-jie, WANG Shi Meso-mechanics of soil-rock mixture with real shape of rock blocks based on 3D numerical direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (10): 2152- 2160
[18]   ZHANG H Y, XU W J, YU Y Z Numerical analysis of soil-rock mixture’s meso-mechanics based on biaxial test[J]. Journal of Central South University, 2016, (23): 685- 700
[19]   何春灿, 胡新丽, 龚辉, 等 基于软硬石模板库的S-RM细观损伤与力学特性分析[J]. 岩土力学, 2016, 37 (10): 2993- 3002
HE Chun-can, HU Xin-li, GONG Hui, et al Analysis of mesoscopic damage and mechanical behaviors of soil-rock mixture based on template database of soft and hard rocks[J]. Rock and Soil Mechanics, 2016, 37 (10): 2993- 3002
[20]   金磊, 曾亚武 S-RM宏细观力学特性和变形破坏机制的三维离散元精细模拟[J]. 岩石力学与工程学报, 2018, 37 (06): 1- 10
JIN Lei, ZENG Ya-wu Refined simulation for macro-and meso-mechanical properties and failure mechanism of soil-rock mixture by 3-D DEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (06): 1- 10
[21]   林宗元. 岩土工程试验监测手册[M]. 北京: 中国建筑工业出版社, 2005.
[22]   BATHURST R J. A study of stress and anisotropy in idealized granular assemblies [D]. Canada: Queen's University at Kingston, 1985.
[23]   ROTHENBURG L, BATHURST R J Analytical study of induced anisotropy in idealized granular materials[J]. Geotechnique, 1989, 39 (4): 601- 614
doi: 10.1680/geot.1989.39.4.601
[1] Jian ZHOU,Gang MA,Wei ZHOU,Yong-gang CHENG,Quan-shui HUANG,Xue-xing CAO. Statistical analysis of fragment shape of rock grain after crushing based on FDEM[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 348-357.
[2] Hua-qing MA,Yong-zhi ZHAO. CFD-DEM investigation on mixing of rod-like particles in spout-fluid bed[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1347-1354.
[3] Shuai ZHENG,Da-peng TAN,Lin LI,Yin-long ZHU. Ultrasonic coupled microreactor CFD-DEM dynamic modeling and regulating method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1237-1251.
[4] Lei XU,Kun LUO,Yong-zhi ZHAO,Jian-ren FAN,Ke-fa CEN. Effect of particle size on liner wear in semi-autogenous mill[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2255-2263.
[5] DONG Hui, WU Kai-song, KUANG Yu-chun, DAI Mao-lin. Study on separation law of hydrate slurry in hydrocyclone based on CFD-DEM[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1811-1820.
[6] DENG Xuan-xuan, MA Gang, ZHOU Wei, CHANG Xiao-lin. Effects of local constraints patterns on fragmentation of single grain[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1329-1337.
[7] LIN Cheng xiang, LING Dao sheng, ZHONG Shi ying. Application of particle flow code numerical simulation in research of geotechnical behavior of lunar soil[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1679-1691.
[8] REN Li-bo, HAN Ji-tian, ZHAO Hong-xia. Numerical simulation of discrete particles in fluidized bed with immersed tube[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 150-156.
[9] CHEN Hui, LIU Yi-lun, ZHAO Xian-qiong, XIAO You-gang. Analysis on avalanching motion and force chains of bed material within rotating cylinder based on discrete element method[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2277-2283.
[10] DIAO Yong-Zhi, JIANG Mao-Jiang, XU Beng, ZHENG Jin-Xiang. Micro-scale simulation of heat transfer behavior in fluidized bed with immersed tube[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(6): 1178-1184.
[11] JIANG Mao-Jiang, DIAO Yong-Zhi, ZHENG Jin-Xiang. Micro-scale simulation and analysis of gas-solid fluidized bed with multi-density distribution of particles[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(09): 1703-1708.