Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (12): 2255-2263    DOI: 10.3785/j.issn.1008-973X.2019.12.001
Mechanical and Energy Engineering     
Effect of particle size on liner wear in semi-autogenous mill
Lei XU1,2(),Kun LUO2,Yong-zhi ZHAO1,*(),Jian-ren FAN2,Ke-fa CEN2
1. Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1651KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effect of particle size on liner wear in semi-autogenous grinding (SAG) mills was investigated using a numerical approach. The charge motion was calculated using discrete element method (DEM) and the liner wear was predicted using shear impact energy model (SIEM). The simulation results indicate that the particle size has evident influence on the liner wear. The liner wear increases with the increase of particle size; the increasing rate is evidently larger when the particle size is small (e.g. d=30 mm). The liner wear mainly occurs during the intense collisions in the bulk toe, which is not altered by the particle size. The kinetic energy of the large particles is significantly larger than that of the small particles. The large particles needs longer time to change the motion state compared with the small particles, which leads to longer intense collisions. The particle size has little influence on the distribution of wear on the lifters.



Key wordsdiscrete element method (DEM)      particle size      semi-autogenous grinding (SAG) mill      liner      wear      erosion      grinding     
Received: 02 November 2018      Published: 17 December 2019
CLC:  TD 453  
Corresponding Authors: Yong-zhi ZHAO     E-mail: zjuxulei@163.com;yzzhao@zju.edu.cn
Cite this article:

Lei XU,Kun LUO,Yong-zhi ZHAO,Jian-ren FAN,Ke-fa CEN. Effect of particle size on liner wear in semi-autogenous mill. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2255-2263.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.12.001     OR     http://www.zjujournals.com/eng/Y2019/V53/I12/2255


物料粒径对半自磨机衬板磨损的影响

采用数值计算方法分析粒径对半自磨(SAG)机衬板磨损的影响。采用离散单元法(DEM)描述物料运动,采用切向碰撞能量磨损模型(SIEM)预测壁面磨损. 结果表明,粒径大小对衬板磨损存在显著影响. 粒径增大,衬板磨损亦随之增大;当粒径较小时(如:d=30 mm),磨损增幅尤为明显. 提升条的磨损主要在经过底脚区与颗粒发生剧烈碰撞时产生,不同粒径大小下均如此. 大颗粒获得的动能要远远大于小颗粒,且相比于小颗粒,大颗粒改变运动状态需要更长的时间,导致剧烈磨损的持续时间亦明显增加. 粒径大小对磨损在提升条上的分布无明显影响.


关键词: 离散单元法(DEM),  物料粒径,  半自磨(SAG)机,  衬板,  磨损,  冲蚀,  研磨 
Fig.1 Sketch map of geometry of semi-autogenous grinding(SAG)mill used in simulations
参数 符号 数值 单位
衬板维氏硬度 HV 370 N/mm2
衬板长度 ? 0.7 m
提升条高度 H 152 mm
提升条数量 ? 60 ?
颗粒密度 ρ 4 500(矿石),
7 800(钢球)
kg/m3
颗粒维氏硬度 HV 160(矿石),370(钢球) N/mm2
矿石之间的恢复系数 eP-P 0.3 ?
矿石与钢球以及衬板间恢复系数 eP-L 0.5 ?
钢球与衬板间恢复系数 eB-L 0.8 ?
滑动摩擦系数 fs 0.5 ?
法向弹性系数 kn 2.8 × 106 N/m
切向弹性系数 kt 8 × 105 N/m
半自磨机转速 ? 10.5 r/min
切片厚度 ? 0.7 m
总填充率 ? 35 %
钢球填充率 ? 15 %
Tab.1 Parameters used in simulations for prediction of liner wear in semi-autogenous grinding (SAG)mills
Fig.2 Snapshots for behavior characteristics of particles(blue:0,red:12 m/s)
Fig.3 Wear rate profiles of a lifter under different particle sizes
Fig.4 Transient wear rate profiles of lifter along circumference of SAG mill under different particle sizes
Fig.5 Predicted average speed profiles of particles adjacent to lifters in target region along circumference of SAG mill under different particle sizes
d/mm Et / J J d/mm Et / J J
30 1.52 0.053 100 43.50 1.850
40 3.67 0.146 150 152.98 8.955
60 11.13 0.458 ? ? ?
Tab.2 Average translational and rotational energy of particles in target region along circumference of semi-autogenous grinding(SAG)mill in region of 110°~170° with width of two times height of lifters
Fig.6 Predicted SD profiles of speed of particles adjacent to lifter in target region along circumference of SAG mill under different particle sizes
Fig.7 Predicted transient wear rates on four positions of lifters in target region along circumference of SAG mill
Fig.8 Predicted tangential stress on four positions of lifters in target region along circumference of SAG mill
d/mm $\displaystyle\sum$ PP-L / (104 J/s) $\displaystyle\sum$ PP-P / (105 J/s) d/mm $\displaystyle\sum$ PP-L / (104 J/s) $\displaystyle\sum$ PP-P / (105 J/s)
30 1.27 2.48 100 2.78 7.64
40 1.70 3.41 150 3.67 8.98
60 2.05 5.45 ? ? ?
Tab.3 Energy dissipation rates consumed by liners and particles
Fig.9 Frequency spectrum of collisions between particles and liners
Fig.10 Energy dissipation spectrum of collisions between particles and liners
[1]   姚军, 曾子华, 周芳, 等 颗粒射流冲击材料行为研究[J]. 北京航空航天大学学报, 2017, 43 (11): 2266- 2272
YAO Jun, ZENG Zi-hua, ZHOU Fang, et al Investigation of behaviour of particle impact on material by impinging jet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43 (11): 2266- 2272
[2]   阎维平, 马凯, 高正阳, 等 增压富氧燃煤锅炉省煤器管束磨损研究[J]. 西安交通大学学报, 2013, 47 (3): 53- 59
YAN Wei-ping, MA Kai, GAO Zheng-yang, et al Erosion of economizer tube bundles in pressurized oxy-fuel coal-fired boiler[J]. Journal of Xi’an Jiaotong University, 2013, 47 (3): 53- 59
doi: 10.7652/xjtuxb201303010
[3]   HU G, OTAKI H, WATANUKI K Motion analysis of a tumbling ball mill based on non-linear optimization[J]. Minerals Engineering, 2000, 13 (8): 933- 947
[4]   CLEARY P W, HOYER D Centrifugal mill charge motion and power draw: comparison of DEM predictions with experiment[J]. International Journal of Mineral Processing, 2000, 59 (2): 131- 148
doi: 10.1016/S0301-7516(99)00063-0
[5]   赵跃民, 张曙光, 焦红光, 等 振动平面上粒群运动的离散元模拟[J]. 中国矿业大学学报, 2006, 35 (5): 586- 590
ZHAO Yue-min, ZHANG Shu-guang, JIAO Hong-guang, et al Simulation of discrete element of particles motion on the vibration plane[J]. Journal of China University of Mining and Technology, 2006, 35 (5): 586- 590
doi: 10.3321/j.issn:1000-1964.2006.05.005
[6]   田瑞霞, 焦红光 离散元软件PFC在矿业工程中的应用现状及分析[J]. 矿冶, 2011, 20 (1): 79- 82
TIAN Rui-xia, JIAO Hong-guang Application status and analysis of discrete element software PFC in mining engineering[J]. Mining and Metallurgy, 2011, 20 (1): 79- 82
doi: 10.3969/j.issn.1005-7854.2011.01.019
[7]   ZHU H P, ZHOU Z Y, YANG R Y, et al Discrete particle simulation of particulate systems: theoretical developments[J]. Chemical Engineering Science, 2007, 62 (13): 3378- 3396
doi: 10.1016/j.ces.2006.12.089
[8]   CLEARY P W Charge behaviour and power consumption in ball mills: sensitivity to mill operating conditions, liner geometry and charge composition[J]. International Journal of Mineral Processing, 2001a, 63 (2): 79- 114
doi: 10.1016/S0301-7516(01)00037-0
[9]   MISHRA B K A review of computer simulation of tumbling mills by the discrete element method: Part II—Practical applications[J]. International Journal of Mineral Processing, 2003, 71 (1): 95- 112
[10]   KALALA J T, BWALYA M, MOYS M H Discrete element method (DEM) modelling of evolving mill liner profiles due to wear. Part II. Industrial case study[J]. Minerals Engineering, 2005, 18 (15): 1392- 1397
doi: 10.1016/j.mineng.2005.02.010
[11]   CLEARY P W, OWEN P Effect of liner design on performance of a HICOM? mill over the predicted liner life cycle[J]. International Journal of Mineral Processing, 2015, 134: 11- 22
doi: 10.1016/j.minpro.2014.11.003
[12]   POWELL M S, WEERASEKARA N S, COLE S, et al DEM modelling of liner evolution and its influence on grinding rate in ball mills[J]. Minerals Engineering, 2011, 24 (3): 341- 351
[13]   崔泽群. 基于离散元法的球磨机最优化设计理论研究[D]. 杭州: 浙江大学, 2013.
CUI Ze-qun. Optimal design theory of ball mill based on discrete element method[D]. Hangzhou: Zhejiang University, 2013.
[14]   李鸿程. 基于离散单元法的球磨机工作参数优化[D]. 昆明: 昆明理工大学, 2013.
LI Hong-cheng. Research on working parameters optimization of ball mill using discrete element method[D]. Kunming: Kunming University of Science and Technology, 2013.
[15]   陶寅, 房怀英, 杨建红, 等 立轴冲击破碎机加速板磨损仿真分析[J]. 矿山机械, 2017, 45 (6): 37- 42
TAO Yin, FANG Huai-ying, YANG Jiang-hong, et al Simulation and analysis on wear of accelerating board of vertical-shaft impact crusher[J]. Mining and Processing Equipment, 2017, 45 (6): 37- 42
doi: 10.3969/j.issn.1001-3954.2017.06.010
[16]   FINNIE I Erosion of surfaces by solid particles[J]. Wear, 1960, 3 (2): 87- 103
doi: 10.1016/0043-1648(60)90055-7
[17]   LYCZKOWSKI R W, BOUILLARD J X State-of-the-art review of erosion modeling in fluid/solids systems[J]. Progress in Energy and Combustion Science, 2002, 28 (6): 543- 602
doi: 10.1016/S0360-1285(02)00022-9
[18]   ZHAO Y, XU L, ZHENG J CFD–DEM simulation of tube erosion in a fluidized bed[J]. AIChE Journal, 2017, 63: 418- 437
doi: 10.1002/aic.15398
[19]   XU L, LUO K, ZHAO Y Numerical prediction of wear in SAG mills based on DEM simulations[J]. Powder Technology, 2018, 329: 353- 363
doi: 10.1016/j.powtec.2018.02.004
[20]   赵永志, 程易 水平滚筒内二元颗粒体系径向分离模式的数值模拟研究[J]. 物理学报, 2008, 57 (1): 322- 328
ZHAO Yong-zhi, CHENG Yi Numerical simulation of radial segregation patterns of binary granular systems in a rotating horizontal drum[J]. Acta Physica Sinica, 2008, 57 (1): 322- 328
doi: 10.3321/j.issn:1000-3290.2008.01.052
[21]   TING J M, CORKUM B T Computational laboratory for discrete element geomechanics[J]. Journal of Computing in Civil Engineering, 1992, 6 (2): 129- 146
doi: 10.1061/(ASCE)0887-3801(1992)6:2(129)
[22]   FINNIE I, WOLAK J, KABIL Y Erosion of metals by solid particles[J]. Journal of Materials, 1967, 2 (3): 682- 700
[23]   BANISI S, HADIZADEH M 3-D liner wear profile measurement and analysis in industrial SAG mills[J]. Minerals Engineering, 2007, 20 (2): 132- 139
doi: 10.1016/j.mineng.2006.07.008
[1] Xun CHENG,Jian-bo YU. Monitoring method for machining tool wear based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 896-904.
[2] Teng ZHANG,Xin-long JIANG,Yi-qiang CHEN,Qian CHEN,Tao-mian MI,Piu CHAN. Wrist attitude-based Parkinson's disease ON/OFF state assessment after medication[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 639-647.
[3] Liang WANG,Hai-jian XIE,Jia-wei WU,Yun-min CHEN,Hao DING. Equivalent model for pollutant transport parameters of layered landfill liners[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 519-529.
[4] Can-jun YANG,Zhen-zhe PENG,Ling-hui XU,Wei YANG. Design of flexible knee-joint protection exoskeleton and walking assistance method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 213-221.
[5] Hai-jin WANG,Zong-yu YIN,Zhen-zheng KE,Ying-jie GUO,Hui-yue DONG. Wear monitoring of helical milling tool based on one-dimensional convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 931-939.
[6] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[7] Wen-han CAO,Jun GONG,Hong-gang WANG,Gui GAO,Yuan QI,Dong-ya YANG. Numerical simulation on wear-thermal-stress coupling behavior of cap-seal seal and optimization design[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 258-267.
[8] Fei FEI,Shen-yu LIU,Chang-cheng WU,De-hua YANG,Sheng-li ZHOU. Human kinetic energy harvesting technology based on magnetic levitation structure[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2215-2222.
[9] HU Li-sha, WANG Su-zhen, CHEN Yi-qiang, GAO Chen-long, HU Chun-yu, JIANG Xin-long, CHEN Zhen-yu, GAO Xing-yu. Fall detection algorithms based on wearable device: a review[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1717-1728.
[10] ZHAO Bin, ZHANG Song, LI Jian-feng. Optimization of grinding parameters based on parts' friction properties[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 16-23.
[11] YUAN Rui-feng, SUN Zhi-jian, YANG Ji-hu, YANG Ming, HU Ya-cai, YU Zi-tao. Experimental study on erosion wear behavior of PFA coated stainless steel tube[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 43-49.
[12] JIANG Xin-long, CHEN Yi-qiang, LIU Jun-fa, HU Li-sha, SHEN Jian-fei. Wearable system to support proximity awareness for people with autism[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 637-647.
[13] CHEN Jian, WANG Jin, LU Guo-dong. Electrode wear layered compensation method with pre-deformation[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 436-444.
[14] XIE Gui ming, WANG Zhi yang, BAO Yong zhong. Particle formation process of vinylidene chloride suspension copolymerizations in presence of blowing agent[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 378-383.
[15] YAN Pei, WENG Wei-guo, ZHENG Cheng-hang, XU Xi, SHEN Zhi-yang, GAO Xiang, NI Ming-jiang, CEN Ke-fa. Experimental study on cement kiln dust removal by high-temperature electrostatic precipitator[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 1959-1966.