Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Electrical Engineering     
Switching model of GaN HEMT in cascode configuration
MA Hao, ZHANG Ning, LIN Liao yuan
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1042KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A model to analyze the switching process and calculate the energy loss of cascode gallium nitride (GaN) transistor was presented in order to calculate the switching loss of high voltage GaN transistor in cascode configuration. The equivalent circuit model of the cascode GaN transistor was obtained through the analysis of the printed circuit board (PCB) and package parasitic inductances and the junction capacitors of the cascode GaN transistor, and then the equivalent double pulse circuit to test switching characteristics was obtained. The turn on process was divided into five stages and the turn off process was divided into four stages. The equivalent double pulse circuit of each stage was analyzed and simplified, and then the time domain expressions of voltage and current in each stage were illustrated. Moreover, the switching waveforms and energy losses were further obtained accordingly. The double pulse experiment was carried out at different values of current and gate resistor. The switching waveforms and energy losses of the proposed model fitted well with experimental results,  which validated the accuracy of the proposed model.



Published: 01 February 2016
CLC:  TM 401  
Cite this article:

MA Hao, ZHANG Ning, LIN Liao yuan. Switching model of GaN HEMT in cascode configuration. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 0-.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.03.00     OR     http://www.zjujournals.com/eng/Y2016/V50/I2/0


共栅共源结构GaN HEMT开关模型

为了计算共栅共源结构高压氮化镓(GaN)器件开关损耗,提出一种共栅共源结构GaN器件开关过程及损耗模型. 通过考虑共栅共源结构中印制电路板(PCB)和引线寄生电感以及器件结电容,得出共栅共源结构GaN器件的等效电路模型,进而得到测试开关特性的双脉冲等效电路. 按时间顺序将开通过程分为5个阶段,将关断过程分为4个阶段,对双脉冲等效电路进行分析和简化,并计算得出各个阶段中共栅共源结构GaN器件电压电流时域表达式,从而得到开关过程波形及损耗. 在不同驱动电阻和开关电流下进行双脉冲实验,模型与实验的开关波形及损耗较吻合,表明所提出模型较准确.
[1] 付文丽. GaN HEMT功率器件新结构和模型研究[D]. 成都: 电子科技大学, 2013: 7-9.
FU Wen li. GAN HEMT power device new structure and modeling research [D]. Chengdu: University of Electronic Science and Technology of China, 2013: 79.
[2] MILLAN J, GODIGNON P, PERPINA X, et al. A survey of wide bandgap power semiconductor devices [J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2155-2163.
[3] 钱照明,张军明,盛况. 电力电子器件及其应用的现状和发展[J]. 中国电机工程学报, 2014, 34(29): 5149-5161.
QIAN Zhao ming, ZHANG Jun ming, SHENG Kuang. Status and development of power semiconductor devices and its applications [J]. Proceedings of the CSEE, 2014, 34(29): 5149-5161.
[4] MITOVA R, GHOSH R, MHASKAR U, et al. Investigations of 600 V GaN HEMT and GaN diode for power converter applications [J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2441-2452.
[5] ZHANG X, YAO C, LI C, et al. A wide bandgap device based isolated quasi switched capacitor DC/DC converter [J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2500-2510.
[6] 马焕,王康平,杨旭,等. GaN器件的LLC谐振变换器的优化设计[J]. 电源学报, 2015, 13(1): 21-27.
MA Huan, WANG Kang ping, YANG Xu, et al. Optimal design of GaN based LLC resonant converter [J]. Journal of Power Supply, 2015, 13(1): 21-27.
[7] 张雅静. 面向光伏逆变系统的氮化镓功率器件应用研究[D]. 北京: 北京交通大学, 2015: 29-33.
ZHANG Ya jing. Research and application of the GaN power device for photovoltaic inverter system[D]. Beijing: Beijing Jiaotong University, 2015: 29-33.
[8] 胡光铖,陈敏,陈烨楠,等. 基于SiC MOSFET户用光伏逆变器的效率分析[J]. 电源学报, 2014(6): 5358, 92.
HU Guang cheng, CHEN Min, CHEN Ye nan, et al. Efficiency analysis of household PV inverter based on SiC MOSFET [J]. Journal of Power Supply, 2014(6): 5358, 92.
[9] 孙运杰,傅鸿雅,王森,等. 一种高频自冷的全数字控制有源电力滤波器[J]. 电源学报, 2015, 13(5): 73-77.
SUN Yun jie, FU Hong ya, WANG Sen, et al. Digital controlled active power filter with characteristic of high frequency and self cooling [J]. Journal of Power Supply, 2015, 13(5): 73-77.
[10] CHOWDHURY S, AND MISHRA U K. Lateral and vertical transistors using the AlGaN/GaN heterostructure [J]. IEEE Transactions on Electron Devices, 2013, 60(10): 3060-3066.
[11] ZHANG Z, EBERLE W, YANG Z, et al. Optimal design of resonant gate driver for buck converter based on a new analytical loss model [J]. IEEE Transactions on Power Electronics, 2008, 23(2): 653-666.
[12] EBERLE W, ZHANG Z, LIU Y, et al. A practical switching loss model for buck voltage regulators [J]. IEEE Transactions on Power Electronics, 2009, 24(3): 700-713.
[13] WANG J, LI R T, CHUNG H S. An investigation into the effects of the gate drive resistance on the losses of the MOSFET snubber diode configuration [J]. IEEE Transactions on Power Electronics, 2012, 27(5): 2657-2672.
[14] AGGELER D, BIELA J, KOLAR J W. Controllable dv/dt behaviour of the SiC MOSFET/JFET cascode an alternative hard commutated switch for telecom applications [C] ∥ 2010 Twenty Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Palm Springs: IEEE, 2010:1584-1590.
[15] ALONSO A R, DIAZ M F, LAMAR D G, et al. Switching performance comparison of the SiC JFET and SiC JFET/Si MOSFET cascode configuration [J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2428-2440.
[16] HUANG X, LI Q, LIU Z, LEE F C. Analytical loss model of high voltage GaN HEMT in cascode configuration [J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2208-2219.
[17] REN Y, XU M, ZHOU J, LEE F C. Analytical loss model of power MOSFET [J]. IEEE Transactions on Power Electronics, 2006, 21(2): 310-319.
[18] 邓夷,赵争鸣,袁立强,等. 适用于复杂电路分析的IGBT模型[J]. 中国电机工程学报, 2010, 30(9): 1-7.
DENG Yi, ZHAO Zheng ming, YUAN Li qiang, et al. IGBT model for analysis of complicated circuits [J]. Proceedings of the CSEE, 2010, 30(9): 1-7.
[19] 李艳,张雅静,黄波,等. Cascode型GaN HEMT输出伏安特性及其在单相逆变器中的应用研究[J]. 电工技术学报, 2015, 30(14): 295-303.
LI Yan, ZHANG Ya jing, HUANG Bo, et al. Research on output volt ampere characteristics of cascode GaN HEMT and its application in single phase inverter [J]. Transaction of China Electrotechnical Society, 2015, 30(14): 295-303.
[20] CHEN Z. Characterization and modeling of high switching speed behavior of SiC active devices [D] .Virginia Polytechnic Institute and State University, 2009: 125-137.
[21] TPH3006PS datasheet [Z]. Transphorm, 2014.
[22] RODRIGUEZ M, RODRIGUEZ A, MIAJA P F, et al. An insight into the switching process of power MOSFETs: an improved analytical losses model [J]. IEEE Transactions on Power Electronics, 2010, 25(6): 1626-1640.
[23] LINDER S. Power semiconductors [M]. Taylor and Francis, 2006.
[24] BENDA V, GOWAR J, GRANT D A. Discrete and integrated power semiconductor devices: theory and applications [M]. John Wiley and Sons, 1999.
[25] MOHAN N, UNDELAND T M. Power electronics: converters, applications, and design [M]. John Wiley and Sons, 2007.
[1] MA Hao, ZHANG Ning, LIN Liao yuan. Switching model of GaN HEMT in cascode configuration[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 508-518.
[2] College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China. Plug and play control method for strategy DC Bus Nanogrid[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 377-384.
[3] ZHAO Wen jian, YANG Kun, CHEN Guo zhu. DC voltage control method of modular multilevel converter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1749-1754.
[4] HU Zhi-Kun, WANG Mei-Ling, GUI Wei-Hua, YANG Chun-Hua, DING Jia-Feng. Support vector machine based classification method for
timeseries periodic waveform
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(7): 1327-1332.