Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (12): 2280-2288    DOI: 10.3785/j.issn.1008-973X.2019.12.004
Mechanical and Energy Engineering     
Adaptive design of shield radius for open type hard rock TBM
Yan-chao TIAN(),Fei HE,Xiao ZHANG
China Railway Engineering Equipment Group Co. Ltd, Zhengzhou 450016, China
Download: HTML     PDF(1345KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The contact model of shield and tunnel was established in order to analyze the adaptive design of shield radius with tunnel radius for open type hard rock tunnel boring machine (TBM). The shield radius design method was proposed based on the change law of the gap between shield and tunnel, considering finite element analysis of mechanical properties and actual working conditions. Results show that the gap between shield and minimum tunnel at the bottom should be 5 to10 mm. At the horizontal location, the shield should be tangent to the tunnel. The radius of shield is decided by both the minimum and the maximum tunnel radius. The radius of roof shied should be 30 to 50 mm smaller than the designed tunnel radius. The maximum gap between shied and tunnel is positively correlated with the radius difference between them, which is affected by tunnel radius. The bottom shied should be contact with the minimum tunnel radius in the bottom, and the bottom shied radius should be 15 to 50 mm smaller than the designed tunnel radius.



Key wordshard rock tunnel boring machine (TBM)      shield      tunnel radius      radius design     
Received: 22 October 2018      Published: 17 December 2019
CLC:  U 455.3  
Cite this article:

Yan-chao TIAN,Fei HE,Xiao ZHANG. Adaptive design of shield radius for open type hard rock TBM. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2280-2288.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.12.004     OR     http://www.zjujournals.com/eng/Y2019/V53/I12/2280


敞开式TBM护盾半径适应性设计

为了研究敞开式岩石隧道掘进机(TBM)护盾半径与开挖洞径的适应性问题,建立护盾与洞壁接触理论模型;基于护盾与洞壁接触间隙的变化规律,结合有限元力学性能分析和实际工况,提出护盾半径的设计方法. 结果表明:底侧护盾最下部应与最小洞壁保持5~10 mm的间隙,在水平位置附近与洞壁相切接触,护盾半径由开挖洞径上、下限共同决定;顶护盾的设计半径应比隧洞开挖半径小30~50 mm,其和洞壁的最大间隙与两者的半径差呈正相关关系,受开挖洞径大小影响微小;底护盾半径设计应保证护盾底部与最小开挖洞壁底部接触,护盾半径应比隧洞开挖半径小15~50 mm.


关键词: 岩石隧道掘进机(TBM),  护盾,  隧洞半径,  半径设计 
Fig.1 Shields of open type tunnel boring machine(TBM)
Fig.2 Diagram of shields in different expansion states
项目 Rn / mm Rf / mm Rfs / mm Rbs / mm Rb / mm
西秦岭 5 115 5 075 5 075 5 075 5 075
高黎贡山 4 515 4 475 4 475 4 475 4 500
吉林引松 3 965 3 865 3 925 3 925 3 950
锦屏 3 615 3 565 3 565 3 565 3 565
Tab.1 Statistics of shields’ radius from some projects
Fig.3 Different installation locations between side shield and bottom shield
Fig.4 Simplified movement model of side shield
Fig.5 Different contact states of side shield and tunnel surface
Fig.6 Diagram of gap between side shield and tunnel surface
Fig.7 Gap between shield and tunnel changing with location
Fig.8 Curve of location angle for specific gap
名称 R / mm R1 / mm sb / mm sh / mm αh / (°)
护盾 a 4 515 4 475 20 0 0
护盾 b 4 515 4 115 20 131 ?45.7
Tab.2 Parameter of contact model for side shield and tunnel
Fig.9 Finite element analysis model of contact between side shield and tunnel
Fig.10 Stress nephograms of action between tunnel and shield with different radius
Fig.11 Schematic diagram of contact between roof shield and tunnel
Fig.12 Curve of gap between shield and tunnel changing with shield radius
Fig.13 Comparison of gap between shield and tunnel for different tunnel radius
[1]   JIANG Q, SU G S, FENG X T, et al Observation of rock fragment ejection in post-failure response[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 74: 30- 37
doi: 10.1016/j.ijrmms.2014.11.007
[2]   HUANG X, LIU Q, SHI K, et al Application and prospect of hard rock TBM for deep roadway construction in coal mines[J]. Tunnelling and Underground Space Technology, 2018, 73: 105- 126
doi: 10.1016/j.tust.2017.12.010
[3]   夏毅敏, 钱聪, 李正光, 等 隧道掘进机支撑推进系统振动特性[J]. 浙江大学学报: 工学版, 2018, 52 (2): 233- 239
XIA Yi-min, QIAN Cong, LI Zheng-guang, et al Vibration characteristics of TBM supporting-thrusting system[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (2): 233- 239
[4]   HONG E S, LEE I M, SHIN H S, et al Quantitative risk evaluation based on event tree analysis technique: application to the design of shield TBM[J]. Tunnelling and Underground Space Technology, 2009, 24 (3): 269- 277
doi: 10.1016/j.tust.2008.09.004
[5]   刘统, 龚国芳, 彭左, 等 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报: 工学版, 2016, 50 (3): 419- 427
LIU Tong, GONG Guo-fang, PENG Zuo, et al Hybrid cuttehead driving system for TBM based on hydraulic transformer[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (3): 419- 427
[6]   XIA Y M, LIN L K, WU D, et al Geological adaptability matching design of disc cutter using multicriteria decision making approaches[J]. Journal of Central South University, 2018, 25 (4): 843- 854
doi: 10.1007/s11771-018-3788-6
[7]   程永亮, 钟掘, 暨智勇, 等 TBM刀盘地质适应性设计方法及其应用[J]. 机械工程学报, 2018, 54 (1): 1- 9
CHENG Yong-liang, ZHONG Jue, JI Zhi-yong, et al Geological adaptive design method and application of TBM cutterhead[J]. Journal of Mechanical Engineering, 2018, 54 (1): 1- 9
[8]   尚彦军, 史永跃, 曾庆利, 等 昆明上公山隧道复杂地质条件下TBM卡机及护盾变形问题分析和对策[J]. 岩石力学与工程学报, 2005, 24 (1): 3858- 3863
SHANG Yan-jun, SHI Yong-yue, ZENG Qing-li, et al TBM jamming and deformation in complicated geological condition and engineering measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (1): 3858- 3863
[9]   YAZDANI-CHAMZINI A, YAKHCHALI S H Tunnel boring machine (TBM) selection using fuzzy multicriteria decision making methods[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2012, 30 (4): 194- 204
[10]   CHO S H, KIM J, WON J, et al Effects of jack force and construction steps on the change of lining stresses in a TBM tunnel[J]. KSCE Journal of Civil Engineering, 2017, 21 (4): 1- 12
[11]   夏毅敏, 林赉贶, 贺飞, 等 盘形滚刀刀圈结构地质适应性设计方法[J]. 机械工程学报, 2018, 54 (1): 10- 17
XIA Yi-min, LIN Lai-kuang, HE Fei, et al Geological adaptability design method of disc cutter ring[J]. Journal of Mechanical Engineering, 2018, 54 (1): 10- 17
[12]   ZHOU H, GAO Y, ZHANG C, et al A 3D model of coupled hydro-mechanical simulation of double shield TBM excavation[J]. Tunnelling and Underground Space Technology, 2018, 71: 1- 14
doi: 10.1016/j.tust.2017.07.012
[13]   MARINOS V, STOUMPOS G, PAPOULI D, et al Selection of TBM and geotechnical assessment of a microtunnel in a difficult geological environment: a case of a natural gas pipeline beneath an active landslide (Albania)[J]. Bulletin of Engineering Geology and the Environment, 2018, (2014): 1- 19
[14]   HASANPOUR R, ROSTAMI J, ?Z?ELIK Y Impact of overcut on interaction between shield and ground in the tunneling with a double-shield TBM[J]. Rock Mechanics and Rock Engineering, 2016, 49 (5): 2015- 2022
doi: 10.1007/s00603-015-0823-x
[15]   程建龙, 杨圣奇, 李学华, 等 位移释放率对双护盾TBM护盾压力的影响研究[J]. 岩土力学, 2016, 37 (5): 1399- 1407
CHENG Jian-long, YANG Sheng-qi, LI Xue-hua, et al Impact of longitudinal displacement profile relaxation on contract force acted on double shield TBM in squeezing ground[J]. Rock and Soil Mechanics, 2016, 37 (5): 1399- 1407
[16]   刘泉声, 黄兴, 时凯, 等 超千米深部全断面岩石掘进机卡机机理[J]. 煤炭学报, 2013, 38 (1): 78- 84
LIU Quan-sheng, HUAN Xing, SHI Kai, et al Jamming mechanism of full face tunnel boring machine in over thousand-meter depths[J]. Journal of China Coal Society, 2013, 38 (1): 78- 84
[17]   刘泉声, 彭星新, 黄兴, 等 全断面隧道掘进机护盾受力监测及卡机预警[J]. 岩土力学, 2018, 39 (9): 3406- 3414
LIU Quan-sheng, PENG Xing-xin, HUAN Xing, et al Monitoring shield stress of tunnel boring machine and jamming warning[J]. Rock and Soil Mechanics, 2018, 39 (9): 3406- 3414
[1] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[2] Jing-jing LIU,Tie-lin CHEN,Mao-hong YAO,Yu-xin WEI,Zi-jian ZHOU. Experimental and numerical study on slurry fracturing of shield tunnels in sandy stratum[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1715-1726.
[3] Wei-lin SU,Xing-Gao LI,Yu XU,Da-long JIN. Numerical simulation of shield tool cutting concrete based on HJC model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1106-1114.
[4] Lian-hui JIA,Tai-yun LI. Key technologies of segment erector for super-large shield machine[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 816-823.
[5] Zi-xin ZHANG,Jia-qi ZHANG,Xin HUANG,Qian-wei ZHUANG. Experimental study on prediction of long-term durability of sealing gasket of shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 118-125.
[6] Rong BIAN,Wen-juan LOU,Hang LI,Xia-shuang ZHAO,Li-gang ZHANG. Aerodynamic characteristics of steel tubular transmission tower in different flow fields[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 910-916.
[7] GUO Xue-yuan, ZHANG Ming-ju, MA Dong, HUANG Li-xin, WANG Wu-xian, WANG Chun-sheng, YANG Shi-peng, QIAO Jing-sheng. Case study on braced excavation with P-CFST for top internal support[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 51-60.
[8] DING Zhi, WANG Fan-yong, WEI Xin-jiang. Prediction and analysis of surface deformation caused by twin shield construction in soft soil[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 61-68.
[9] YANG Chun-shan, WEI Li-xin, MO Hai-hong, HE Ze-gan. Longitudinal rigidity of shield tunnel considering deformation characteristic and joints characteristic of lining[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 358-366.
[10] ZHANG Xue-hui, CHEN Ji-xiang, BAI Yun, CHEN Ang, HUANG De-zhong. Ground surface deformation induced by quasi-rectangle EPB shield tunneling[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 317-324.
[11] ZHANG Run feng, LIANG Rong zhu, ZHANG Xian min, XUE Xin hua. Analysis on shield construction parameters during down crossing existing buildings[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 545-550.
[12] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine  tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1268-1275.
[13] LI Zhong-chao, CHEN Ren-peng, MENG Fan-yan, YE Jun-neng. Tunnel boring machine  tunneling-induced ground settlements in soft clay and influence of excavation parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 2-3.
[14] LU Hao, WANG Ming-yang, XIA Yuan-pu, RONG Xiao-li. Calculation model of cutterhead torque for earth pressure balance shield[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1640-1645.
[15] LIANG Rong-zhu, PAN Jin-long, LIN Cun-gang, SHAN Hua-feng, SUN Lian-wei. Settlement boundary induced by shield tunnelling in soft ground[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1148-1154.