Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Civil and Transportation Engineering     
Analysis on shield construction parameters during down crossing existing buildings
ZHANG Run feng1, LIANG Rong zhu2,3, ZHANG Xian min1, XUE Xin hua4
1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;3. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China; 4. College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
Download:   PDF(1944KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The law of shield construction parameters and attitude control are presented and interpreted by investigating  the Hangzhou metro Line 2 tunnel project. The monitored construction data and field measurements show that the heave of buildings occurs when the earth pressures of chamber are larger than the horizontal earth pressures in situ and the cutter head is in front of the buildings. There are certain relationships between the rotating direction and the earth pressures of chamber. When the cutter head rotates clockwise, the monitored left earth pressures are significantly larger than the right earth pressures, and vice versa.  Shield went doun for several times beneath shield driving in order to reduce the compressing effect caused by cutter head and avoide the larger heave of the buildings. The opposite rotating direction of cutter head helps to adjust the rolling of shield body. Set that the thrusts of down zone jacks is larger than that of upper zone jacks, the correction moments caused by the difference will effectively adjust the pitching angels during tunnlling in soft soils.



Published: 18 September 2016
CLC:     
  TU 47  
Cite this article:

ZHANG Run feng, LIANG Rong zhu, ZHANG Xian min, XUE Xin hua. Analysis on shield construction parameters during down crossing existing buildings. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 545-550.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.03.020     OR     http://www.zjujournals.com/eng/Y2016/V50/I3/545


下穿既有建筑期间盾构施工参数分析

以杭州地铁二号线为对象,研究在盾构下穿既有建筑过程中盾构施工参数及姿态参数的变化规律. 基于盾构掘进参数及现场实测数据发现,在盾构到达既有房屋前,盾构土舱压力大于静止侧向土压力会致使房屋隆起变形;盾构刀盘回转方向与土舱压力具有相关性,当盾构刀盘顺时针回转时,左侧土压力大于右侧土压力,反之亦然.为降低盾构刀盘挤压效应,避免房屋过大隆起变形,盾构经历多次停机;反向回转盾构切口可调整盾体回转角;设定下区千斤顶推力大于上区千斤顶,其差值产生的纠偏力矩可有效地调整盾构俯仰角.

[1] MOLLON G, DIAS D, SOUBRA A H. Face stability analysis of circular tunnels driven by a pressurized shield [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 136(1): 215-229.
[2] ANAGNOSTOU G, KOVARI K. Face stability conditions with earth pressure balanced shields [J]. Tunnelling and Underground Space Technology, 1996, 11(2): 165-173.
[3] WONG K S, NG C W W, CHEN Y M, et al. Centrifuge and numerical investigation of passive failure of tunnel face in sand [J]. Tunnelling and Underground Space Technology, 2012, 28(3): 297-303.
[4] 张凤祥, 朱合华,傅德明. 盾构隧道[M]. 北京:人民交通出版社, 2004:224-225.
[5] 王洪新. 土压平衡盾构刀盘挤土效应及刀盘开口率对盾构正面接触压力影响[J]. 土木工程学报,2009,42(7):113-118.
WANG Hong xin. Effect of cutter head compressing the front soil and influence of head aperture ratio on contact pressure of EPB shield to the front soil [J]. China Civil Engineering Journal,2009,42(7):113-118.
[6] SUGIMOTO M, SRAMOON A. Theoretical model of shield behavior during excavation. I: theory [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128 (2): 138-155.
[7] SRAMOON A, SUGIMOTO M. Theoretical model of shield behavior during excavation.Ⅱ: application [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002,128(2): 156-165.
[8] SUGIMOTO M, SRAMOON A, KONIHI S et al. Simulation of shield tunneling behavior along a curved alignment in a multilayered ground [J]. Journal of Geotehnical and Geoenvironmental Engineering, 2007, 133(6): 684-694.
[9] YUE M ,WEI J, SUN W, GUO Z. Dynamic mechanism and key rectification techniques of shield machine in the vertical plane [C] ∥ 2nd International Conference on Intelligent Robotics and Applications, 2009: 412-422.
[10] SUN W, YUE M, WEI J. Relationship between rectification moment and angle of shield based on numerical simulation [J]. Journal of Central South University, 2012, 19(2): 517-521.
[11] YUE M, SUN W, HU P. Dynamic coordinated of attitude correction for the shield tunneling based on load observer [J]. Automation in Construction, 2012,24(24): 24-29.
[12] 张厚美,古力. 盾构机姿态参数的测量及计算方法研究[J]. 现代隧道技术,2004, 41(2): 13-20.
ZHANG Hou mei, GU Li. On the measurement and the method of computation of the posture parameters of shields [J]. Modern Tunnelling Technology. 2004, 41(2): 13-20.
[13] LEE K M, JI H W, SHEN C K, et al, Ground response to the construction of Shanghai Metro tunnel line 2 [J]. Soils and Foundations, 1999, 39(3): 113-134.
[14] 梁荣柱, 潘金龙, 林存刚, 等. 软土地区盾构施工沉降界限[J]. 浙江大学学报:工学版, 2014, 48(7): 1148-1154.
LIANG Rong zhu, PAN Jin long, LIN Cun gang, et al. Settlement boundary induced by shield tunnelling in soft ground [J]. Journal of Zhejiang University: Engineering Science, 2014, 48(7): 1148-1154.
[15] 林存刚,吴世明,张忠苗,等,盾构掘进速度及非正常停机对地面沉降的影响[J],岩土力学,2012,33(8):2472-2482.
LIN Cun gang, WU Shi ming, ZHANG Zhong miao, et al. Influences of shield advance rate and abnormal machine halt on tunnelling induced ground surface settlements [J]. Rock and Soil Mechanics. 2012,33(8):2472-2482.
[16] 梁荣柱,夏唐代,吴昊,等. 软土地区土压平衡盾构反扭矩分析[J]. 中南大学学报:自然科学版,2015,46(10): 3814-3821.
LIANG Rong zhu, XIA Tang dai, WU Hao, et al. Analysis of reverse torque of EPB shield tunnelling in soft ground [J]. Journal of Central South University: Science and Technology, 2015, 46(10): 3814-3821.
[17] 唐晓武,朱季,刘维,等. 盾构施工过程中的土体变形研究[J]. 岩石力学与工程学报, 2010, 29(2): 417-422.
TANG Xiao wu, ZHU Ji, LIU Wei, et al. Research on soil deformation during shield construction process [J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(2):417-422.
[18] LEE K M, ROWE R K, LO K Y. Subsidence owing to tunnelling. I. estimating the gap parameter [J]. Canadian Geotechnical Journal, 1992, 29(6): 929-940.

[1] DONG Kai, LAI Jun ying, QIAN Xiao qian, ZHAN Shu lin, RUAN Fang. Energy efficiency of residential buildings with horizontal external shading in hot summer and cold winter zone[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1431-1437.
[2] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1493-1498.
[3] CHIANG Yen ming, ZHANG Jian quan, MING Yan. Flood forecasting by ensemble neural networks[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1471-1478.
[4] ZHONG Wei, PENG Liang, ZHOU Yong gang, XU Jian, CONG Fei yun. Slagging diagnosis of boiler based on wavelet packet analysis and support vector machine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1499-1506.
[5] XIA Yu feng, REN Li, YE Cai hong, WANG Li. Multi-objective optimization of locators layout of reinforced panel based on RSM[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1600-1607.
[6] LI Lin yu, WU Zhang hua, YU Guo yao, DAI Wei, LUO Er cang.
Experimental investigation on electroacoustic conversion characteristic of linear compressor
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1529-1536.
[7] QU Wei wei, TANG Wei, BI Yun bo, LI Shao bo, LUO Shui jun. Pre-joining processes plan to avoid forced assemblies and improve efficiency[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1561-1569.
[8] HU Xiao dong, GU Lin yi, ZHANG Fan meng. High-speed on/off valves applied in digital displacement motor[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1551-1560.
[9] YANG Shu, LIU Guo ping, QI Chang, WANG Da zhi. Simulation and optimization for anti-shock performances of graded metal hollow sphere foam structure[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1593-1599.
[10] YANG Zhang, TONG Gen shu, ZHANG Lei. Effective Rigidity of two one-side stiffeners arranged symmetrically[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1446-1455.
[11] JIANG Xiang, TONG Gen shu, ZHANG Lei. Experiments on fire-resistance performance of fire-resistant steel-concrete composite beams[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1463-1470.
[12] SHAN Hua feng, XIA Tang dai, YU Feng, HU Jun hua,PAN Jin long. Buckling stability analysis on critical load of underpinning pile for excavation beneath existing building[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1425-1430.
[13] GU Tian lai, ZHANG Shuai, ZHENG Yao. Back pressure characteristics of jaws inlet with constant-area isolator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1418-1424.
[14] CHENG Shi wei, LU Yu hua, CAI Hong gang. Mobile device based eye tracking technology[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1160-1166.
[15] ZHENG Cheng zhi, GAO Jin liang, HE Wen jie. Leakage discharge analysis model based on FastICA algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1031-1039.