Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (4): 816-823    DOI: 10.3785/j.issn.1008-973X.2020.04.021
Civil Engineering, Traffic Engineering     
Key technologies of segment erector for super-large shield machine
Lian-hui JIA(),Tai-yun LI*()
China Railway Engineering Equipment Group Limited Company, Zhengzhou 450016, China
Download: HTML     PDF(1839KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The load distribution and variation of 9.2 m segment erector with high moment of inertia were analyzed combined with the segment and sealing extrusion force parameters of Shantou Gulf Tunnel based on the segment erecting requirements for super large slurry shield machine of 15.03 m diameter. The structure design of segment erector telescoping mechanism was optimized according to the analysis results, which effectively reduced the maximum friction of telescoping mechanism. The rotary hydraulic system of segment erector was designed aiming at the difficulty of speed stabilization control of segment erector with high moment of inertia under variable load conditions. The influence of variable load conditions on the response performance and speed stability of the system was analyzed by AMESim simulation. Results showed that the lateral friction resistance of telescopic cylinder of telescoping mechanism was negatively correlated with the length of guide sleeve. The designed hydraulic system can not only meet the requirement of wide range speed regulation, but also have stable and reliable speed control, which can effectively reduce the influence of load alternation on the stability of rotary speed.



Key wordssuper large slurry shield machine      segment erector      load distribution      rotary hydraulic system      AMESim     
Received: 23 January 2019      Published: 05 April 2020
CLC:  U 455  
Corresponding Authors: Tai-yun LI     E-mail: jialianhui2005@163.com;18790259528@163.com
Cite this article:

Lian-hui JIA,Tai-yun LI. Key technologies of segment erector for super-large shield machine. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 816-823.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.04.021     OR     http://www.zjujournals.com/eng/Y2020/V54/I4/816


超大直径盾构管片拼装机关键技术

依托15.03 m超大直径泥水盾构机管片拼装的需求,结合汕头海湾隧道管片及密封挤压力的参数,分析回转直径为9.2 m的超大惯量管片拼装机负载分布与变化情况. 根据分析结果优化了拼装机伸缩机构的结构尺寸,有效降低了伸缩机构的最大摩擦力;针对拼装机超大惯量变负载工况速度稳定控制的难点,设计管片拼装机回转液压系统,通过AMESim仿真分析变负载工况对系统的响应性能和速度稳定性的影响. 研究结果表明,伸缩机构伸缩油缸的侧向摩擦阻力与导向套长度负相关;设计的液压系统不仅能够实现较大范围的调速要求,而且速度控制稳定可靠,能够有效降低负载交变对回转速度稳定性的影响.


关键词: 超大泥水盾构,  管片拼装机,  载荷分布,  回转液压系统,  AMESim 
Fig.1 Structure of segment erector
Fig.2 Six degrees of freedom of segment
Fig.3 Telescopic mechanism
Fig.4 Kinematic pair of telescopic mechanism
Fig.5 Force analysis of telescopic cylinder
Fig.6 Hydraulic schematic diagram of telescopic system
Fig.7 Maximum position of segment rotary torque
Fig.8 Hydraulic schematic diagram of rotary system
参数 单位 参数值
马达排量 mL/r 110(可调)
变量泵排量 mL/r 140(可调)
溢流阀压力设定 MPa 25
比例阀额定电流 mA 40(可调)
比例阀固有频率 Hz 80
比例阀最大通流量 L/min 200
负载转动惯量 kg/m3 2 500(可调)
总减速比 ? 500
油液密度 kg/m3 850
油液体积弹性模量 MPa 700
电机转速 r/min 1 450
Tab.1 Simulation parameters of hydraulic rotary system
Fig.9 AMESim simulation model of hydraulic rotary system
Fig.10 External load on system
Fig.11 Rotation speed under external load
Fig.12 Multi-functional hydraulic test bed
Fig.13 Data acquisition for FAT
Fig.14 Data acquisition for SAT
Fig.15 Rotation speed test data of segment erector under load
Fig.16 Rotation pressure test data of segment erector under load
Fig.17 Comparison and analysis of simulation and test data of segment erector rotation
[1]   张碧, 赵海峰, 杨涛, 等 盾构管片拼装机国内外研究现状[J]. 矿山机械, 2014, 42 (4): 1- 6
ZHANG Bi, ZHAO Hai-feng, YANG Tao, et al Research status of segment erector in shield tunneling machine at home and abroad[J]. Mining and Processing Equipment, 2014, 42 (4): 1- 6
[2]   YANG H Y, SHI H, GONG G F, et al Electro-hydraulic proportional control of thrust system for shield tunneling machine[J]. Automation in Construction, 2009, 18 (7): 950- 956
doi: 10.1016/j.autcon.2009.04.005
[3]   陈馈 琼州海峡隧道超大直径盾构新技术展望[J]. 隧道建设, 2014, 34 (7): 603- 607
CHEN Kui Prospect of new technology of oversize shield in Qiongzhou channel tunnel[J]. Tunnel Construction, 2014, 34 (7): 603- 607
doi: 10.3973/j.issn.1672-741X.2014.07.001
[4]   陈健, 黄永亮 超大直径泥水盾构施工难点与关键技术总结[J]. 地下空间与工程学报, 2015, 11 (Suppl.2): 637- 644
CHEN Jian, HUANG Yong-liang Summary of key technologies and construction difficulties in large diameter slurry shield tunnel[J]. Chinese Journal of Underground Space and Engineering, 2015, 11 (Suppl.2): 637- 644
[5]   刘金刚, 王凯, 廖金军 抑制管片拼装机起步冲击的模糊控制算法研究[J]. 机械科学与技术, 2017, 36 (2): 286- 291
LIU Jin-gang, WANG Kai, LIAO Jin-jun Study on fuzzy control algorithm for restraining starting impact of segment erector[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36 (2): 286- 291
[6]   李锁牢, 李明辉 基于AMESim的盾构管片拼装机液压回转系统仿真分析[J]. 液压与气动, 2017, (1): 35- 38
LI Suo-lao, LI Ming-hui Simulation analysis based on AMESim for shield segment erector hydraulic rotary system[J]. Chinese Hydraulics and Pneumatics, 2017, (1): 35- 38
doi: 10.11832/j.issn.1000-4858.2017.01.008
[7]   李宏波, 周建军, 张兵, 等 超大直径盾构管片拼装机液压和电控系统设计[J]. 液压与气动, 2016, (11): 36- 41
LI Hong-bo, ZHOU Jian-jun, ZHANG Bing, et al The design of hydraulic system and electric control system for extra-large diameter shield erector[J]. Chinese Hydraulics and Pneumatics, 2016, (11): 36- 41
doi: 10.11832/j.issn.1000-4858.2016.11.007
[8]   孙志超, 黄晓华 基于AMEsim盾构机管片拼装系统的建模与仿真[J]. 机床与液压, 2013, 41 (13): 144- 146
SUN Zhi-chao, HUANG Xiao-hua Modeling and simulation of segment erector system for shield tunnel machine based on AMESim[J]. Machine Tool and Hydraulics, 2013, 41 (13): 144- 146
doi: 10.3969/j.issn.1001-3881.2013.13.041
[9]   周倜. 小直径全断面掘进机管片拼装机液压系统设计及仿真[D]. 长春: 吉林大学, 2009.
ZHOU Ti. Simulation and design on hydraulic system for shield machine segment erector [D]. Changchun: Jilin University, 2009.
[10]   陈馈, 冯欢欢 盾构管片拼装模拟装置液压系统设计与仿真分析[J]. 液压气动与密封, 2014, 34 (9): 11- 14
CHEN Kui, FENG Huan-huan Design and study on the hydraulic system of a shield segment assembling simulator[J]. Hydraulics Pneumatics and Seals, 2014, 34 (9): 11- 14
doi: 10.3969/j.issn.1008-0813.2014.09.005
[11]   丁书福. 盾构管片拼装机电液控制系统研究[D]. 杭州: 浙江大学, 2005.
DING Shu-fu. The research of the electro-hydraulic control system of the shield's erector [D]. Hangzhou: Zhejiang University, 2005.
[12]   LI G, CHEN Y D, WANG B, et al Dynamics simulation of asix -dof tunnel segment erector for tunnel boring machine based on virtual prototype[J]. Applied Mechanics and Materials, 2013, 251: 231- 234
[1] Yan-long ZHAO,Xing-fei LI,Shao-bo YANG,Hong-yu LI,Jia-yi XU,Yue LIN. Variable buoyancy system performance for profile buoy “Fuxing”[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1240-1248.
[2] Ming SHEN,Qing GAO,Yan WANG,Tian-shi ZHANG. Design and analysis of battery thermal management system for electric vehicle[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1398-1406.
[3] He-ran ZHANG,Xiao-ping OUYANG,Sheng-rong GUO,Yu-long LIU. Analysis on whistle of pressure servo-valve based on oil-return resistance[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2085-2091.
[4] ZENG Xiao-hua, LI Wen-yuan, LI Guang-han, SONG Da-feng, LI Li-xin. Modeling of pump in hub-motor hydraulic driving vehicle[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1603-1609.
[5] WANG Ming-dou, TAO Jian-feng, QIN Cheng-jin, LIU Cheng-liang. Trajectory planning for segment erector based on optimal space allowance[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 453-460.
[6] GUI Long-hui, XIE Ji-ming, LIN Ying-zi, ZHANG Hong-wei. Aeroelastic model study of cantilever skywalk bridge[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2121-2129.
[7] SUN Wei, DU Jia-nan, WANG Lin-tao, MA Hong-hui. High speed and low impact control method for electro-hydraulic system of segment erector in tunnel boring machine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 1948-1958.
[8] LIAO Xiang ping, GONG Guo fang, PENG Xiong bin, WU Wei qiang. Jam breakout characteristic of tunnel boring machine based on hydro viscous drive mechanism[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 902-912.
[9] LIU Tong, GONG Guo fang, PENG Zuo, WU Wei qiang, PENG Xiong bin. Hybrid cutterhead driving system for TBM based on hydraulic transformer[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 419-427.
[10] LYU Qin, LI De tang, TANG Wen tao, CAO Wei nan, JIN Huo ran, HU Xing chen. Design oscillating buoy wave power generating system based on hydraulic transmission[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 234-240.
[11] LIU Tong, GONG Guo fang, PENG Zuo, WU Wei qiang, PENG Xiong bin. Hybrid cutterhead driving system for TBM based on hydraulic transformer[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 0-.
[12] HUANG Yan, WANG Peng, XIE Gao hui, AN Jun xiu. Data center energy cost optimization in smart grid: a review[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2386-2399.
[13] DU Rui long, CHEN Ying long, ZHOU Hua, WANG Jia. New distributing mechanism for high speed single-piston axial piston pump[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1902-1910.
[14] YANG Yong, ZHOU Xiao-jun, YANG Chen-long, MO Jin-qiu. Dynamic distribution method of multi-axle vehicle’s driving axle load on test bench[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1080-1085.
[15] FAN Shuang-shuang, YANG Can-jun, PENG Shi-lin, LI Kai-hu, XIE Yu, ZHANG Shao-yon. Design and experimental research on key pressure subsystems of underwater glider[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 633-640.