Please wait a minute...
J4  2014, Vol. 48 Issue (4): 633-640    DOI: 10.3785/j.issn.1008-973X.2014.04.011
    
Design and experimental research on key pressure subsystems of underwater glider
FAN Shuang-shuang, YANG Can-jun, PENG Shi-lin, LI Kai-hu, XIE Yu, ZHANG Shao-yong
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1717KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to develop a 200 m depth underwater glider, the development details of the pressure hull and ballast system of the underwater glider were presented, including the design methods, simulation analysis and pressure tests. Conventional yield and buckling criteria was used to size the hull, with which the material and wall thickness were determined by comparison calculation. Stress distribution and deformation of the designed hull was analyzed with finite element simulation. Pressure test in hyperbaric chamber validated the strength and sealability of the hull. Ballast system changes the volume of an external bladder by inflating or deflating oil to modulate the net wight of underwater glider. AMESim simulation validated the feasibility of the system. A special kind of pressure test was designed to examine the performance of the ballast system, with which the optimal-efficiency speed of motor was obtained and the response capability of ballast system was investigated at this speed under different pressures. The ballast system is characterized as accurate buoyancy adjustment, reliable operation and compact structure. The two subsystems functioned well and had reliable performance during pressure tests, which provided a powerful guarantee for the development of the whole underwater glider.



Published: 03 September 2014
CLC:  TP 242  
  P 715  
Cite this article:

FAN Shuang-shuang, YANG Can-jun, PENG Shi-lin, LI Kai-hu, XIE Yu, ZHANG Shao-yon. Design and experimental research on key pressure subsystems of underwater glider. J4, 2014, 48(4): 633-640.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.04.011     OR     http://www.zjujournals.com/eng/Y2014/V48/I4/633


水下滑翔机关键承压系统设计与试验研究

为了研制最大下潜深度为200 m的水下滑翔机,分别对耐压外壳和浮力调节系统的设计方法、仿真分析和压力试验结果进行介绍.根据强度和失稳校核准则以对比计算的方式确定耐压外壳的材料和壁厚,借助有限元分析软件对耐压外壳进行应力和应变分析,通过大高压舱试验有效地验证了耐压外壳的承压性和密封性.浮力调节系统采用吸排油液改变外置油囊体积的方式实现对水下滑翔机系统净浮力的调节,通过AMESim仿真验证了设计方案的可行性,设计小高压舱试验对浮力调节系统的工作性能进行测试,确定了电机-泵的最优效率转速并对该转速下不同负载的响应情况进行调查.该浮力调节系统具有浮力调节准确、运行可靠及结构紧凑的特点.研究表明,设计的水下滑翔机关键承压系统运行稳定,性能可靠,为水下滑翔机的整机研制提供了有力的保证.

[1] WEBB D, SIMONETTI P, JONES C. SLOCUM: an underwater glider propelled by environmental energy [J]. IEEE Journal of Oceanic Engineering, 2001, 26: 447-452.
[2] ERIKSEN C, OSSE T, LIFHT R, et al. Seaglider: A long range autonomous underwater vehicle for oceanographic research [J]. IEEE Journal of Oceanic Engineering, 2001, 26: 424-436.
[3] SHERMAN J, DAVIS R, OWENS W, et al. The autonomous underwater glider “Spray” [J]. IEEE Journal of Oceanic Engineering, 2001, 26: 437-446.
[4] RUDNICK D, DAVIS R, FRATANTONI D. Underwater gliders for ocean research [J]. Marine Technology Society Journal, 2004, 38: 73-84.
[5] MA Zheng, ZHANG Hua, ZHANG Nan, et al. Study on energy and hydrodynamic performance of the underwater glider [J]. Journal of Ship Mechanics, 2006,10(3): 53-60.
[6] 李志伟,崔维成. 水下滑翔机水动力外型研究综述[J]. 船舶力学, 2012,16(7): 829-837.
LI Zhi-wei, CUI Wei-cheng. Overview on the hydrodynamic performance of underwater gliders [J]. Journal of Ship Mechanics, 2012, 16(7): 829837.
[7] WANG Shu-xin, SUN Xiu-jun, WANG Yan-hui, et al. Dynamic modeling and motion simulation for a winged hybrid-driven underwater glider [J]. China Ocean Engineering, 2010, 25(1): 97-112.
[8] 曾庆礼,张宇文,赵加鹏.水下滑翔机总体设计与运动分析[J].计算机仿真, 2010, 27(1): 1-5.
ZENG Qing-li, ZHANG Yu-wen, ZHAO Jia-peng.Design and hydrodynamic analysis of underwater glider [J]. Computer Simulation, 2010,27(1): 15.
[9] YU Jian-cheng, ZhANG Ai-qun, JIN Wen-ming, et al. Development and experiments of the sea-wing underwater glider [J]. China Ocean Engineering, 2011, 25(4): 721-736.
[10] 赵伟,杨灿军,陈鹰.水下滑翔机浮力调节系统设计及动态性能研究[J].浙江大学学报:工学版,2009, 43(10): 1772-1776.
ZHAO Wei, YANG Can-jun, CHEN Ying. Design and dynamic performance study of buoyancy regulating system of autonomous underwater glider [J]. Journal of Zhejiang University: Engineering Science, 2009, 43(10): 1772-1776.
[11] 王志文,蔡仁良.化工容器设计[M].北京:化学工业出版社, 2005.
[12] 丁伯民,蔡仁良.压力容器设计:原理及工程应用[M].北京: 中国石化出版社, 1992.
[13] 张洪信, 管殿柱. 有限元基础理论与ANSYS 11.0应用[M]. 北京: 机械工业出版社, 2009.
[14] 付永领,祁晓野.AMESim系统建模和仿真:从入门到精通[M].北京: 北京航空航天大学出版社, 2006.
[15] GRAVER J. Underwater gliders: dynamics, control, and design [D]. New Jersey: Princeton University, 2005: 229-236.

[1] KANG Yi-fei, SONG Yong-duan, SONG Yu, YAN De-li. Simultaneous localization and  mapping without relying on odometer[J]. J4, 2014, 48(3): 414-422.
[2] CHEN Ming-ya, XIANG Zhi-yu, LIU Ji-lin. Assistance localization method for mobile robot based on
monocular natural visual landmarks
[J]. J4, 2014, 48(2): 285-291.
[3] CHEN Qing-cheng, ZHU Shi-qiang, WANG Xuan-yin, ZHANG Xue-qun. Inverse kinematics sub-problem solution algorithm for serial robot based on screw theory[J]. J4, 2014, 48(1): 8-14.
[4] LIN Ying, GONG Xiao-jin, LIU Ji-lin. Calibration of fisheye cameras based on the viewing sphere[J]. J4, 2013, 47(8): 1500-1507.
[5] CHEN Wei-hai, CHEN Quan-zhu, LIU Rong, ZHANG Jian-bing, CUI Xiang. Homing algorithm analysis of a cable-driven
humanoid-arm manipulator
[J]. J4, 2013, 47(2): 345-352.
[6] WU Wen-xiang, ZHU Shi-qiang, JIN Xing-lai. Dynamic Identification for Robot Manipulators Based on
Modified Fourier Series
[J]. J4, 2013, 47(2): 231-237.
[7] WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. Improved adaptive robust control of servo system with harmonic drive[J]. J4, 2012, 46(10): 1757-1763.
[8] OUYANG Liu, XU Jin, GONG Xiao-jin, LIU Ji-lin. Optimization of visual odometry based on uncertainty analysis[J]. J4, 2012, 46(9): 1572-1579.
[9] MA Li-sha, ZHOU Wen-hui, GONG Xiao-jin, LIU Ji-lin. Motion constrained generalized Field D* path planning[J]. J4, 2012, 46(8): 1546-1552.
[10] JIN Bo, CHEN Cheng, LI Wei. Optimization of energy-efficient torque distribution
for hexapod walking robot
[J]. J4, 2012, 46(7): 1168-1174.
[11] LU Dan-hui, ZHOU Wen-hui, GONG Xiao-jin, LIU Ji-lin. Decoupled mobile robot motion estimation based on fusion of
visual and inertial measurement unit
[J]. J4, 2012, 46(6): 1021-1026.
[12] WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. INSGA-Ⅱ based multi-objective trajectory planning for manipulators[J]. J4, 2012, 46(4): 622-628.
[13] XU Jin, SHEN Min-yi, YANG Li, WANG Wei-qiang, LIU Ji-lin. Binocular bundle adjustment based localization
and terrain stitching for robot
[J]. J4, 2011, 45(7): 1141-1146.
[14] CHEN Jia-qian, LIUYu-tian, HE Yan, JIANG Jing-ping. Novel dynamic mapping method based on occupancy grid
model and sample sets
[J]. J4, 2011, 45(5): 794-798.
[15] DING Yuan-ming, WANG Xuan-yin. Optimization method of serial manipulator structure[J]. J4, 2010, 44(12): 2360-2364.