Please wait a minute...
J4  2010, Vol. 44 Issue (12): 2360-2364    DOI: 10.3785/j.issn.1008-973X.2010.12.021
    
Optimization method of serial manipulator structure
DING Yuan-ming, WANG Xuan-yin
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A structure optimization method based on comprehensive performance index of workspace and energy cost was presented for serial manipulator structure. Based on the original structure design, this method takes the global conditioning index as a premise, and takes the workspace characteristics and energy cost in particular working area as a comprehensive performance index. By using the real coded genetic algorithm, this method optimizes manipulator geometric parameters to minimize the running energy cost and maintain the original workspace design. The calculation formulas of the comprehensive performance index of workspace and energy cost were deduced and a detailed manipulator structure optimization algorithm was also given. Results of the structural optimization of a 6R serial manipulator proved that this method can optimize structure parameters to save the energy cost efficiently, and the optimal manipulator satisfies all workspace constraints, which means this method can provide reference for the design of manipulator structure.



Published: 01 December 2010
CLC:  TP 242.2  
Cite this article:

DING Yuan-ming, WANG Xuan-yin. Optimization method of serial manipulator structure. J4, 2010, 44(12): 2360-2364.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.12.021     OR     http://www.zjujournals.com/eng/Y2010/V44/I12/2360


串联机械臂结构优化方法

为解决串联机械臂结构优化问题,提出一种基于工作空间和能量消耗综合指标的机械臂结构优化方法.该方法在机械臂原有结构设计的基础上,以满足原有全局性能指标约束为前提,以机械臂工作空间和特定工作区域上的能量消耗为性能指标,利用遗传算法优化机械臂结构参数,使优化后的机械臂不但具有原设计工作空间特性,而且运行能量消耗最优;推导了基于工作空间和能量消耗的综合性能指标计算方法,并给出基于实数编码遗传算法的机械臂结构优化算法.在某6R型串联机械臂结构优化上的应用结果表明:该机械臂结构优化方法能有效地优化机械臂结构,减小运行能量消耗,优化结果能够满足预定工作空间特性约束.

[1] GUPTA K C, ROTH B. Design considerations for manipulator workspace [J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1982, 104(1): 704-711.
[2] GOSSELIN C, ANGELES J. The optimum kinematic design of a planar threedegreeoffreedom parallel manipulator [J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1988, 110(1): 35-41.
[3] GOSSELIN C, ANGELES J. A global performance index for the kinematic optimization of robotic manipulators [J]. Journal of Mechanical Design, 1991, 113(3): 220-226.
[4] LAN Peng, LIU Manlan, LU Nianli, et al. Optimal design of a novel high speed and high precision 3DOF manipulator [C]∥ Proceedings of the 2005 IEEE International Conference on Mechatronics. Taipei, Taiwan: IEEE,2005: 689-694.
[5] HWANG Y K, YOON J W, RYU J H. The optimum design of a 6DOF parallel manipulator with large orientation workspace [C]∥ SICEICASE International Joint Conference. Busan, Korea: SICEICASE,2006: 18-21.
[6] LIU Haitao, HUANG Tian, MEI Jianping, et al. Kinematic design of a 5DOF hybrid robot with large workspace/limbstroke ratio [J]. Journal of Mechanical Design, 2007, 129(5): 530-537.
[7] OETOMO D, DANEY D, MERLET J P. Design strategy of serial manipulators with certified constraint satisfaction [J]. IEEE Transactions on Robotics, 2009, 25(1): 1-11.

[1] CHEN Qing-cheng, ZHU Shi-qiang, WANG Xuan-yin, ZHANG Xue-qun. Inverse kinematics sub-problem solution algorithm for serial robot based on screw theory[J]. J4, 2014, 48(1): 8-14.
[2] WU Wen-xiang, ZHU Shi-qiang, JIN Xing-lai. Dynamic Identification for Robot Manipulators Based on
Modified Fourier Series
[J]. J4, 2013, 47(2): 231-237.
[3] WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. INSGA-Ⅱ based multi-objective trajectory planning for manipulators[J]. J4, 2012, 46(4): 622-628.