Please wait a minute...
J4  2014, Vol. 48 Issue (1): 8-14    DOI: 10.3785/j.issn.1008-973X.2014.01.002
    
Inverse kinematics sub-problem solution algorithm for serial robot based on screw theory
CHEN Qing-cheng, ZHU Shi-qiang, WANG Xuan-yin, ZHANG Xue-qun
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1161KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel inverse kinematics sub-problem solution based on screw theory was proposed in order to improve the operation efficiency of inverse kinematics for serial robot and clarify the geometrical significance. The solution can be described as ‘rotating about three non-intersecting axes of which two axes are parallel and non co-planar to the third’. Taking 6 DOF serial robot Qianjiang I as an example, the kinematics model based on screw theory was constructed by introducing the product of exponentials (POEs) formula and the inverse kinematics was solved by using the proposed novel inverse kinematics sub-problem solution. The full inverse kinematics problem was reduced into appropriate sub-problems involving three basic known Paden-Kahan sub-problems. The reliability and real-time performance of the proposed algorithm was testified by checking computations and simulation.



Published: 01 January 2014
CLC:  TP 242.2  
Cite this article:

CHEN Qing-cheng, ZHU Shi-qiang, WANG Xuan-yin, ZHANG Xue-qun. Inverse kinematics sub-problem solution algorithm for serial robot based on screw theory. J4, 2014, 48(1): 8-14.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.01.002     OR     http://www.zjujournals.com/eng/Y2014/V48/I1/8


基于旋量理论的串联机器人逆解子问题求解算法

为了提高串联机器人逆运动学的求解效率,明确逆解的几何意义,提出基于旋量理论的逆运动学子问题求解算法.该子问题描述为“绕3个不相交轴旋转(其中2个轴线平行,且与第3个轴异面)”.以6自由度串联机器人“钱江一号”为例,通过旋量理论及指数积(POEs)方程来建立运动学模型,给出该新型逆运动学子问题的求解方法.将整体逆运动学问题分解为该类子问题和其他已知的Paden-Kahan逆运动学子问题来联合求解.通过实例验算证明,该逆运动学子问题的求解方法高效可靠,具有明显的几何意义,能够满足机器人的强实时系统控制要求.

[1] DAVIDSON J K, HUNT K H, PENNOCK G R. Robots and screw theory: applications of kinematics and statics to robotics [M]. Oxford: Oxford University Press, 2004.
[2] 程永伦, 朱世强, 刘松国. 基于旋转子矩阵正交的6R机器人运动学逆解研究[J]. 机器人, 2008, 30(2):160-164.
CHENG Yong-lun, ZHU Shi-qiang, LIU Song-guo. Inverse kinematics of 6R robots based on the orthogonal character of rotation sub-matrix [J]. Robot, 2008, 30(2): 160-164.
[3] KUCUK S, BINGUL Z. The inverse kinematics solutions of industrial robot manipulators [C]∥Proceedings of the IEEE International Conference on Mechatronics. Tunis Tunisia: IEEE, 2004: 274-279.
[4] SELIG J. Geometrical foundations of robotics [M]. Singapore: World Scientific Publishing Co., Inc., 2000.
[5] SARIYILDIZ E, CAKIRAY E, TEMELTAS H. A comparative study of three inverse kinematic methods of serial industrial robot manipulators in the screw theory framework [J]. International Journal of Advanced Robotic Systems, 2011, 8(5): 9-24.
[6] 赵杰, 刘玉斌, 蔡鹤皋. 一种运动旋量逆解子问题的求解及其应用[J]. 机器人, 2005, 27(2): 163-167.
ZHAO Jie, LIU Yu-bin, CAI He-gao. Solution for one type of inverse kinematics sub-problem in screw theory and its application [J]. Robot, 2005, 27(2): 163-167.
[7] CAMPA R, CAMARILLO K, ARIAS L. Kinematic modeling and control of robot manipulators via unit quarternions: application to a spherical wrist [C]∥Proceedings of the 45th IEEE International Conference on Mechatronics Decision and Control. San Diego: IEEE, 2006: 64746479.\
[8\] BROCKETT R. Robotic manipulators and the product of exponentials formula\
[C\]∥Proceedings of the MTNS83 International Symposium. Beer Sheva: Springer,1984:120-129.
[9] ROCHA C, TONETTO C, DIAS A. A comparison between the Denavit-Hartenberg and the screw-based methods used in kinematic modeling of robot manipulators [J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(4): 723-728.
[10] SARIYILDIZ E, TEMELTAS H. Solution of inverse kinematic problem for serial robot using quaterninons [C]∥Proceedings of the IEEE International Conference on Mechatronics and Automation. Changchun: IEEE, 2009: 26-31.
[11] TAN Yue-sheng, XIAO Ai-ping. Extension of the second paden-kahan sub-problem and its application in the inverse kinematics of a manipulator [C]∥Proceedings of the IEEE International Conference on Robotics, Automation and Mechatronics. Chengdu:IEEE, 2008: 379-381.
[12] 钱东海, 王新峰, 赵伟, 等. 基于旋量理论和 Paden-Kahan 子问题的 6 自由度机器人逆解算法[J]. 机械工程学报, 2009, 45(9): 72-76.
QIAN Dong-hai, WANG Xin-feng, ZHAO Wei, et al. Algorithm for the inverse kinematics calculation of 6-DOF robots based on screw theory and Paden-Kahan sub-problems [J]. Journal of Mechanical Engineering, 2009, 45(9): 72-76.
[13] 吕世增, 张大卫, 刘海年. 基于吴方法的 6R 机器人逆运动学旋量方程求解[J]. 机械工程学报, 2010, 46(17): 35-41.
LV Shi-zeng, ZHANG Da-wei, LIU Hai-nian. Solution of screw equation for inverse kinematics of 6R robot based on Wus method [J]. Journal of Mechanical Engineering, 2010, 46(17): 35-41.
[14] 陈伟海, 陈泉柱, 张建斌, 等. 线驱动拟人臂机器人逆向运动学分析[J]. 机械工程学报, 2007, 43(4): 12-20.
CHEN Wei-hai, CHEN Quan-zhu, ZHANG Jian-bin, et al. Inverse kinematic analysis for cable-driven humanoid-arm manipulator [J]. Journal of Mechanical Engineering, 2007, 43(4): 12-20.
[15] 理查德·摩雷,李泽湘,厦恩卡·萨思特里. 机器人操作的数学导论[M]. 北京:机械工业出版社,1998.
[16] 熊有伦. 机器人学[M]. 北京:机械工业出版社,1993.

[1] WU Wen-xiang, ZHU Shi-qiang, JIN Xing-lai. Dynamic Identification for Robot Manipulators Based on
Modified Fourier Series
[J]. J4, 2013, 47(2): 231-237.
[2] WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. INSGA-Ⅱ based multi-objective trajectory planning for manipulators[J]. J4, 2012, 46(4): 622-628.
[3] DING Yuan-ming, WANG Xuan-yin. Optimization method of serial manipulator structure[J]. J4, 2010, 44(12): 2360-2364.