Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (5): 910-916    DOI: 10.3785/j.issn.1008-973X.2019.05.011
    
Aerodynamic characteristics of steel tubular transmission tower in different flow fields
Rong BIAN1(),Wen-juan LOU2,*(),Hang LI2,Xia-shuang ZHAO3,Li-gang ZHANG3
1. State Grid Zhejiang Economic Research Institute, Hangzhou 310027, China
2. Institute of Structural Engineering, Zhejiang University, Hangzhou 310027, China
3. Zhejiang Huayun Electric Power Engineering Design and Consulting Co. Ltd, Hangzhou 310027, China
Download: HTML     PDF(1186KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Tower body section and single windward frame models with different solidity ratios and aspect ratios were designed and constructed based on the section size of a typical panel at 1/3 height of SZ27102 steel tubular transmission tower. Wind tunnel tests were carried out in uniform laminar flow and uniform turbulent flow fields based on high-frequency-force-balance technique. The drag coefficients of single windward frames, shielding factors and overall drag coefficients of tower body section were measured and analyzed. Results showed that high intensity turbulence reduced the drag coefficients of single frames and increased the shielding factors, therefore the overall drag coefficients of tower body section measured in two flow fields were almost equal. The drag coefficients of single frames suggested by Chinese code were smaller than the measured values, particularly when the solidity ratio was small. It is suggested that the drag coefficients of single frames in Chinese code should be increased with consideration of the effect of solidity ratio. Some adjustment for the shielding factors are suggested as the values suggested by Chinese code are larger than the measured values and those suggested by British code.



Key wordssteel tubular transmission tower      tower body section      uniform turbulent flow field      drag coefficient      shielding factor     
Received: 30 March 2018      Published: 17 May 2019
CLC:  TU 312  
Corresponding Authors: Wen-juan LOU     E-mail: bianrong1@163.com;louwj@zju.edu.cn
Cite this article:

Rong BIAN,Wen-juan LOU,Hang LI,Xia-shuang ZHAO,Li-gang ZHANG. Aerodynamic characteristics of steel tubular transmission tower in different flow fields. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 910-916.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.05.011     OR     http://www.zjujournals.com/eng/Y2019/V53/I5/910


不同流场下钢管输电塔塔身气动力特性

根据SZ27102钢管输电塔塔身1/3高度处的典型节段截面尺寸,设计制作不同密实度和宽高比的塔身节段模型及迎风面单片桁架模型. 分别在均匀层流场和均匀湍流场下开展高频测力风洞试验,获得迎风面单片桁架体型系数、背风面荷载降低系数和塔身节段体型系数等气动力参数. 结果表明,高湍流度来流条件会导致单片桁架体型系数的减小以及背风面荷载降低系数的增大,从而导致2类流场下钢管塔塔身节段体型系数较接近. 对于单片钢管桁架体型系数,中国规范推荐取值总体小于试验值,且当密实度较小时偏小程度较明显,建议规范考虑密实度对单片钢管桁架体型系数的影响,适当提高单片钢管桁架体型系数;对于背风面荷载降低系数,中国规范取值大于试验值,也大于英国规范取值,建议中国规范对钢管输电塔背风面荷载降低系数做部分调整.


关键词: 钢管输电塔,  塔身节段,  均匀湍流场,  体型系数,  背风面荷载降低系数 
模型类型 模型编号 b/a $\phi $
单片桁架 1 ? 0.18
2 ? 0.12
3 ? 0.28
4 ? 0.33
塔身节段 5 1.0 0.18
6 1.0 0.12
7 1.0 0.28
8 1.0 0.33
9 1.5 0.18
10 2.0 0.18
Tab.1 Basic parameters of tower body section and single frame models
Fig.1 Experimental pictures of tower body section models
Fig.2 Vertical view of aspect ratio of section model
Fig.3 Wind tunnel force measuring test of steel tubular transmission tower section model
Fig.4 Physical map of vertical grilles in wind tunnel
Fig.5 Profiles of turbulence intensity in uniform turbulent flow field
Fig.6 Variation of drag coefficients of single frames with wind velocity in two wind flow fields
Fig.7 Variation of drag coefficients of tower body section with wind velocity in two wind flow fields
Fig.8 Variation of shielding factors with wind velocity in two wind flow fields
Fig.9 Variation of drag coefficients of single frames with solidity ratio
Fig.10 Variation of drag coefficients of body section of steel tubular tower with solidity ratio
$b/a$ ${C_{\rm{D}}^{(2)}}$试验值 中国规范(亚临界) 英国规范(亚临界)
${C_{\rm{D}}^{(2)}}$ 偏差 ${C_{\rm{D}}^{(2)}}$ 偏差
1.0 1.97 1.96 ?0.5% 1.73 ?12.2%
1.5 2.01 1.98 ?1.5% 1.73 ?12.6%
2.0 2.14 2.01 ?6.1% 1.74 ?18.7%
Tab.2 Comparison of drag coefficients of tower body section with different aspect ratios
Fig.11 Variation of shielding factors of steel tubular tower with different solidity ratios
b/a η试验值 中国规范 英国规范(亚临界)
η 偏差 η 偏差
1.0 0.69 0.88 27.5% 0.57 ?17.4%
1.5 0.72 0.91 26.4% 0.58 ?19.4%
2.0 0.83 0.94 13.3% 0.59 ?28.9%
Tab.3 Comparison of shielding factors of steel tubular tower with different aspect ratios
b/a η
$ \phi$=0.1 $ \phi$=0.2 $ \phi$=0.3
1) 注:括号内为中国规范[14]的建议值.
1.0 0.90(1.00)1) 0.75(0.85) 0.70(0.69)
2.0 ? 0.85(0.92) ?
Tab.4 Proposed values of shielding factors of steel tubular tower with different aspect ratios
[1]   邹良浩, 梁枢果, 邹垚, 等 格构式塔架风载体型系数的风洞试验研究[J]. 特种结构, 2008, 25 (5): 41- 43
ZOU Liang-hao, LIANG Shu-guo, ZOU Yao, et al Investigation on wind load shape coefficient of lattice tower by wind tunnel tests[J]. Special Structure, 2008, 25 (5): 41- 43
doi: 10.3969/j.issn.1001-3598.2008.05.013
[2]   程志军, 付国宏, 楼文娟, 等 高耸格构式塔架风荷载试验研究[J]. 实验力学, 2000, 15 (1): 51- 55
CHENG Zhi-jun, FU Guo-hong, LOU Wen-juan, et al Reasearch for the wind force on high-rise latticed tower[J]. Journal of Experimental Mechanics, 2000, 15 (1): 51- 55
doi: 10.3969/j.issn.1001-4888.2000.01.008
[3]   沈国辉, 项国通, 邢月龙, 等 2种风场下格构式圆钢塔的天平测力试验研究[J]. 浙江大学学报: 工学版, 2014, 48 (4): 704- 710
SHEN Guo-hui, XIANG Guo-tong, XING Yue-long, et al Experimental investigation of steel latticed towers with cylindrical members based on force balance tests under two wind flows[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (4): 704- 710
[4]   楼文娟, 王东, 沈国辉, 等 角钢输电塔杆件风压及体型系数的风洞试验研究[J]. 华中科技大学学报: 自然科学版, 2013, 41 (4): 114- 118
LOU Wen-juan, WANG Dong, SHEN Guo-hui, et al Wind tunnel tests for wind load distribution and shape coefficient of angle-made-transmission towers[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2013, 41 (4): 114- 118
[5]   顾明, 郑远海, 张庆华 典型输电塔平均风荷载和响应研究[J]. 中国工程机械学报, 2008, 6 (1): 6- 12
GU Ming, ZHENG Yuan-hai, ZHANG Qing-hua Response analysis on mean wind force of typical power transmission towers[J]. Chinese Journal of Construction Machinery, 2008, 6 (1): 6- 12
doi: 10.3969/j.issn.1672-5581.2008.01.002
[6]   邓洪洲, 张建明, 帅群, 等 输电钢管塔体型系数风洞试验研究[J]. 电网技术, 2010, 34 (9): 190- 194
DENG Hong-zhou, ZHANG Jian-ming, SHUAI Qun, et al Wind tunnel investigation on pressure coefficient of steel tubular transmission tower[J]. Power System Technology, 2010, 34 (9): 190- 194
[7]   肖春云, 陈政清, 牛华伟, 等. 高压输电塔体型系数试验研究[C] // 第十四届全国结构风工程学术会议论文集. 北京: 中国土木工程学会, 2009: 401–404.
XIAO Chun-yun, CHEN Zheng-qing, NIU Hua-wei, et al. Experimental investigation on body shape coefficients of high voltage transmission tower [C] // The 14th National Conference on Structural Wind Engineering. Beijing: China Civil Engineering Society, 2009: 401–404.
[8]   CARRIL C F, ISYUMOV N, BRASIL R M L R F Experimental study of the wind forces on rectangular latticed communication towers with antennas[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91 (8): 1007- 1022
doi: 10.1016/S0167-6105(03)00049-7
[9]   杨风利, 张宏杰, 杨靖波, 等 高压输电铁塔塔身背风面风荷载遮挡效应研究[J]. 振动工程学报, 2016, 29 (2): 276- 283
YANG Feng-li, ZHANG Hong-jie, YANG Jing-bo, et al Shielding effects on the leeward side of high voltage transmission tower bodies under wind load[J]. Journal of Vibration Engineering, 2016, 29 (2): 276- 283
[10]   YANG F, YANG J, NIU H, et al Design wind loads for tubular-angle steel cross-arms of transmission towers under skewed wind loading[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 140: 10- 18
doi: 10.1016/j.jweia.2015.01.012
[11]   张庆华, 顾明, 黄鹏 格构式塔架风力特性试验研究[J]. 振动与冲击, 2009, 28 (2): 1- 4
ZHANG Qing-hua, GU Ming, HUANG Peng Experimental study of wind force on latticed tower[J]. Journal of Vibration and Shock, 2009, 28 (2): 1- 4
doi: 10.3969/j.issn.1000-3835.2009.02.001
[12]   李加武, 林志兴, 项海帆 桥梁断面三分力系数的雷诺数效应[J]. 同济大学学报: 自然科学版, 2004, 32 (10): 1328- 1333
LI Jia-wu, LIN Zhi-xing, XIANG Hai-fan Reynolds number effect of mean force coefficient of two kinds of typical bridge deck section[J]. Journal of Tongji University: Natural Science, 2004, 32 (10): 1328- 1333
[13]   顾明, 王新荣 工程结构雷诺数效应的研究进展[J]. 同济大学学报: 自然科学版, 2013, 41 (7): 961- 969
GU Ming, Wang Xin-rong Research progress of Reynolds number effect of engineering structures[J]. Journal of Tongji University: Natural Science, 2013, 41 (7): 961- 969
[14]   中国能源局. 架空输电线路钢管塔设计技术规定: DL/T 5254—2010 [S]. 北京: 中国电力出版社, 2011: 17–19.
[15]   Japanese Electrotechnical Committee. Design standards on structures for transmissions: JEC-127–1979 [S]. Tokyo: Electrical College, 1979: 36–40.
[16]   British Standards Institution. Lattice tower and masts-Part1: code of practice for loading: BS 8100—1986 [S]. London: British Standards Institution, 2005: 21–29.
[17]   ZHANG H, MELBOURNE W H Interference between two circular cylinders in tandem in turbulent flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41 (1): 589- 600
[1] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[2] Zhi-song WANG,Jun DENG,Zhi-yuan FANG,Yuan-yuan CHEN. Large eddy simulation of wind load on low-rise buildings subjected to downburst[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 512-520.
[3] Ming-feng HUANG,He-kai YE,Wen-juan LOU,Xuan-tao SUN,Jian-yun YE. Wind-induced vibration and fatigue analysis of long span lattice structures considering distribution of wind speed and direction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1916-1926.
[4] QIAN Cheng, SHEN Guo-hui, GUO Yong, XING Yue-long. Influence of semi-rigid connections on wind-induced responses of transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1082-1089.
[5] LOU Wen juan, LUO Gang, HU Wen kan. Calculation method for equivalent static wind loads and wind load adjustment coefficients for transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2120-2127.
[6] WANG Lei,LIANG Shu guo,WANG Ze kang,ZHANG Zheng wei. Effect of aerodynamic optimization to across-wind response of  super tall buildings[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1239-1246.
[7] SHEN Guo hui, YAO Dan, YU Shi ce, LOU Wen juan, XING Yue long, PAN Feng. Wind tunnel test of wind field characteristics on isolated hill and two adjacent hills[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 805-812.
[8] LIANG Xiao-tian, YUAN Xing-fei. Performance analysis of buckling in compressive strut supported by prestressed cables[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 505-510.
[9] XIAO Nan,YANG Feng-chun. Suggestions for reinforcement increment in concrete floor slabs under different temperature and displacement boundary conditions[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1925-1932.
[10] LOU Wen-juan, WANG Jia-wei, YANG Lun, CHEN Yong. Simulation of three-dimensional fluctuating wind velocity field #br# upon thunderstorm downburst[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1162-1169.
[11] WANG Lei, LIANG Shu-guo, ZOU Liang-hao, TANG Huai-qiang, WANG Shu-liang. Investigation on VIV system vibration frequency of super high-rise building[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 805-812.
[12] ZHAO Yang,LIN Yin,YU Shi-ce. Wind-tunnel test of wind loads on large cylindrical structures with very low aspect ratio[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 820-826.
[13] SHEN Guo-hui, XIANG Guo-tong, XING Yue-long, GUO Yong, SUN Bing-nan. Experimental investigation of steel latticed towers with cylindrical members based on force balance tests under two wind flows[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 704-710.
[14] SHEN Guo-hui, CHEN Zhen, XING Yue-long, GUO Yong, SUN Bing-nan. Bearing capacity of steel tubular joints under compression in
direction of annular ribbed plate
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 168-173.
[15] . Wind-resistant safety analysis of light-weight steel portal frame structures[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2141-2145.