Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (2): 250-257    DOI: 10.3785/j.issn.1008-973X.2019.02.007
Mechanical Engineering     
Coordinated control of gripper and thrust system for TBM based on construction data
Yu-xi CHEN(),Guo-fang GONG*(),Zhuo SHI,Hua-yong YANG
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1229KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The control system based on restricted thrust force and constant support force in gripper and thrust system (TFRSFCGT), and the control system based on constant thrust force along the tunneling direction and constant support force in gripper and thrust system (TFCSFCGT) were proposed, in order to solve the problems that the gripper shoes equipped in TBM failed to support the surrounding rock under a strong thrust load impact or crushed the surrounding rock in a soft rock formation. The coupling relationship among the output force of support cylinder, the output force of thrust cylinder and the type of surrounding rock at the place of supporting was derived after establishing the mechanical model of the gripper and thrust mechanism. The electro-hydraulic systems of these two control strategies were designed, then the hydraulic system models were set up in AMESim software and the control system models were set up in Matlab software, respectively. Finally, the performance of these two control strategies was compared and analyzed by using co-simulation method. Results showed that the TFRSFCGT system and the TFCSFCGT system can maintain the support force acting on the surrounding rock under the premise of providing required propulsion, and the maximum overshoot values were 0.928% and 0.378%, respectively. The TFCSFCGT system has a faster tunneling speed, while the TFRSFCGT system has better adaptability to load impact under the same load.



Key wordstunnel boring machine (TBM)      gripper and thrust system      restricted thrust force      constant thrust force      constant support force      co-simulation     
Received: 25 April 2018      Published: 21 February 2019
CLC:  U 455  
Corresponding Authors: Guo-fang GONG     E-mail: kiwicyx@163.com;gfgong@zju.edu.cn
Cite this article:

Yu-xi CHEN,Guo-fang GONG,Zhuo SHI,Hua-yong YANG. Coordinated control of gripper and thrust system for TBM based on construction data. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 250-257.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.02.007     OR     http://www.zjujournals.com/eng/Y2019/V53/I2/250


基于施工数据的TBM支撑推进协调控制系统

针对全断面硬岩隧道掘进机(TBM)在较强推进负载冲击下撑靴打滑、偏软岩层段靴体压溃侧壁围岩等问题,提出基于推进力限定和支撑力恒定的支撑推进控制系统(TFRSFCGT),以及基于掘进方向推进分力恒定和支撑力恒定的支撑推进控制系统(TFCSFCGT). 建立TBM支撑推进机构力学模型,推导支撑油缸输出力、推进油缸输出力和支撑处围岩类别的耦合关系,设计2种基于新型控制策略的电液控制系统,利用AMESim软件和Matlab软件分别搭建液压系统模型和控制系统模型,最后搭建电液联合仿真模型. 仿真结果表明:TFRSFCGT系统和TFCSFCGT系统在提供系统所需推进力的前提下,能保持围岩实际所受支撑力恒定,最大超调量别为0.928%、0.378%;在相同负载特性下,TFCSFCGT系统掘进速度更快,而TFRSFCGT系统对负载冲击顺应性更强.


关键词: 隧道掘进机(TBM),  支撑推进系统,  推进力限定,  推进力恒定,  支撑力恒定,  联合仿真 
Fig.1 Simplified diagram of open type TBM gripper and thrust mechanism
Fig.2 Diagram of gripper mechanical analysis
Fig.3 Diagram of main beam mechanical analysis in horizontal direction
Fig.4 Simplified diagram of TFRSFCGT system control strategy
Fig.5 Schematic diagram of TFRSFCGT hydraulic system
Fig.6 Simplified diagram of TFCSFCGT system control strategy
Fig.7 Schematic diagram of TFCSFCGT hydraulic system
参数 参数值 参数 参数值
v/(mm?s?1 (0,2.5) Dc/mm 380
x/mm (0,1 062.7) k/(N?m?1 2×109
Dt/mm 180 M/kg 11 773
Bv/(N?m?1?s) 3.2×108 $p_{\rm{g}}^{{\max }}$/MPa 6
Tab.1 Main parameters of systems in simulation models
Fig.8 Curves of output force of cylinders and support force acting on surrounding rock in different systems
Fig.9 Curves of flow response of thrust cylinders in three different systems
Fig.10 Curves of thrust displacement in three different systems
[1]   王梦恕 开敞式TBM在铁路长隧道特硬岩、软岩地层的施工技术[J]. 土木工程学报, 2005, 38 (5): 54- 58
WANG Meng-shu Construction technique of open TBM for long railway tunnels in very hard or soft rock strata[J]. China Civil Engineering Journal, 2005, 38 (5): 54- 58
doi: 10.3321/j.issn:1000-131X.2005.05.009
[2]   杜彦良, 杜立杰. 全断面岩石隧道掘进机系统原理与集成设计[M]. 武汉: 华中科技大学出版社, 2011: 1–16.
[3]   HUANG T, WANG X L, LIU H T, et al Force analysis of an open TBM gripping-thrusting-regripping mechanism[J]. Mechanism and Machine Theory, 2016, 98: 101- 113
doi: 10.1016/j.mechmachtheory.2015.12.003
[4]   YANG H Y, SHI H, GONG G F, et al Electro-hydraulic proportional control of thrust system for shield tunneling machine[J]. Automation in Construction, 2009, 18 (7): 950- 956
doi: 10.1016/j.autcon.2009.04.005
[5]   EBRAHIM F, JAMAL R Effect of adverse geological condition on TBM operation in Ghomroud tunnel conveyance project[J]. Tunnelling and Underground Space Technology, 2009, 24 (4): 436- 446
doi: 10.1016/j.tust.2008.12.006
[6]   ERIKA P, FEDERICALUCIA S, JIAN Z Analysis and estimation of gripper TBM performances in highly fractured and faulted rocks[J]. Tunnelling and Underground Space Technology, 2016, 52: 44- 61
doi: 10.1016/j.tust.2015.11.017
[7]   LIU J, CAO P, DU C H, et al Effects of discontinuities on penetration of TBM cutters[J]. Journal of Central South University, 2015, 22 (9): 3624- 3632
doi: 10.1007/s11771-015-2903-1
[8]   施虎, 龚国芳, 杨华勇, 等 盾构掘进机推进力计算模型[J]. 浙江大学学报: 工学版, 2011, 45 (1): 126- 131
SHI Hu, GONG Guo-fang, YANG Hua-yong, et al Determination of thrust force for shield tunneling machine[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (1): 126- 131
[9]   霍军周, 杨静, 孙伟, 等 不同TBM支撑结构形式下的围岩稳定性分析[J]. 东北大学学报: 自然科学版, 2014, 35 (11): 1602- 1606
HUO Jun-zhou, YANG Jing, SUN Wei, et al Stability analysis of surrounding rock under different TBM supporting forms[J]. Journal of Northeastern University: Natural Science, 2014, 35 (11): 1602- 1606
doi: 10.3969/j.issn.1005-3026.2014.11.019
[10]   RAO Y Y, GONG G F, YANG X, et al. Research on geologic adaptive control of ground pressure for single gripping TBM [C]// International Conference on Control, Automation and Information Sciences. Changchun: IEEE, 2015: 7–11.
[11]   孙伟, 凌静秀, 霍军周, 等 TBM水平支撑不同接触面积下的围岩稳定性分析[J]. 哈尔滨工程大学学报, 2014, 50 (21): 92- 98
SUN Wei, LING Jing-xiu, HUO Jun-zhou, et al Stability analysis of surrounding rock of TBM gripper with different contact areas[J]. Journal of Harbin Engineering University, 2014, 50 (21): 92- 98
[12]   WU Y, TAO J, LIU C, et al. Stiffness modeling of thrust cylinder in hard rock tunnel boring machine [C]// International Conference on Fluid Power and Mechatronics. Harbin: IEEE, 2015: 157–162.
[13]   YAO J, XIA Y, CHENG Y, et al. Endocrine intelligent control of thrust hydraulic system for TBM [C]//International Conference on Intelligent Robotics and Applications. South Korea: Springer, 2013: 720–726.
[14]   牛文文. TBM支撑推进机构掘进性能分析[D]. 天津: 天津大学, 2014: 10–15.
NIU Wen-wen. Analysis on excavating performance of gripper and thrust mechanism of TBM [D]. Tianjin: Tianjin University, 2014: 10–15.
[15]   彭欢, 张怀亮, 袁坚, 等 硬岩掘进机比例调速阀选型方法[J]. 机械工程学报, 2014, 50 (21): 92- 98
PENG Huan, ZHANG Huai-liang, YUAN Jian, et al Tunnel boring machine proportional flow control valve selection method[J]. Journal of Mechanical Engineering, 2014, 50 (21): 92- 98
[16]   LIU Z B, XIE H B, YANG H Y. Analysis and comparison of two different hydraulic thrust systems on shield tunneling machine [C]// IEEE/ASME International Conference Montreal on Advanced Intelligent Mechatronics. Montreal: IEEE, 2010: 563-568.
[17]   LIU Z B, XIE H B, YANG H Y. Simulation analysis of pressure regulation of hydraulic thrust system on a shield tunneling machine [C]// International Conference on Intelligent Robotics and Applications. Singopore: Springer, 2009: 493–503.
[18]   龚秋明, 佘祺锐, 侯哲生, 等 高地应力作用下大理岩岩体的TBM掘进试验研究[J]. 岩石力学与工程学报, 2010, 29 (12): 2522- 2532
GONG Qiu-ming, SHE Qi-rui, HOU Zhe-sheng, et al Experimental study of TBM penetration in marble rock mass under high geostress[J]. Chinese Journal of Rock Mechanicsand Engineering, 2010, 29 (12): 2522- 2532
[19]   ZHANG L M, WU X G, SKIBNIEWSKI M J Simulation-based analysis of tunnel boring machine performance in tunneling excavation[J]. Journal of Computing in Civil Engineering, 2015, 30 (4): 04015073
[20]   GAO X D, YANG J X, CHEN K. Study on thrust hydraulic system of TBM based on AMESim and MATLAB/Simulink interface [C]// International Conference on Mechatronics, Materials, Chemistry and Computer Engineering. Xi’an: Atlantis Press, 2015: 2809-2814.
[21]   郝培, 余海东, 赵勇 考虑隧道表面特性的硬岩全断面掘进装备撑靴接触界面刚度分析[J]. 上海交通大学学报, 2014, 48 (6): 827- 832
HAO Pei, YU Hai-dong, ZHAO Yong Normal stiffness of tunnel surface contacting with thrusting boots of TBM with various surface characteristics[J]. Journal of Shanghai Jiaotong University, 2014, 48 (6): 827- 832
[1] Yi-zhe MAO,Guo-fang GONG,Xing-hai ZHOU,Fei WANG. Identification of TBM surrounding rock based on Markov process and deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 448-454.
[2] Hao CHEN,Xin-jie WANG,Jiong WANG,Zhan-wen XI,Yun CAO. Optimization and design of micro-electro-thermal actuator based on Kriging model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1490-1496.
[3] Fei WANG,Guo-fang GONG,Li-wen DUAN,Yong-feng QIN. XGBoost based intelligent determination system design of tunnel boring machine operation parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 633-641.
[4] Hai-dong WU,Zhen-li SI. Intelligent vehicle trajectory tracking control based on linear matrix inequality[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 110-117.
[5] Yan-chao TIAN,Fei HE,Xiao ZHANG. Adaptive design of shield radius for open type hard rock TBM[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2280-2288.
[6] Na ZHANG,Jian-bin LI,Liu-jie JING,Chen YANG,Shuai CHEN. Prediction method of rockmass parameters based on tunnelling process of tunnel boring machine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1977-1985.
[7] LI Jin-lin, WANG Jia-bin, HE Wen. Electromechanical co-simulation analysis for contactless positioning and vibration isolation platform[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 146-157.
[8] LIU Jian-qin, XING Zhen-hua, BIN Huai-cheng, GUO Wei. Cutters' layout method of tunnel boring machine cutter-head under mixed-face rock ground[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 166-173.
[9] WANG Kai, YANG Yu-hu, HUANG Tian, NIU Wen-wen, HE Fei. Topological structure and kinematic characteristic analysis of TBM gripping-thrusting-regripping mechanism[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1135-1142.
[10] LIU Tong, GONG Guo fang, PENG Zuo, WU Wei qiang, PENG Xiong bin. Hybrid cutterhead driving system for TBM based on hydraulic transformer[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 419-427.
[11] LIU Tong, GONG Guo fang, PENG Zuo, WU Wei qiang, PENG Xiong bin. Hybrid cutterhead driving system for TBM based on hydraulic transformer[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 0-.
[12] WANG Wei-ping, ZHANG Huai-liang, ZHANG Guo-liang.
Analysis of valve port leakage on direct operated relief valve under foundation vibration
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1160-1165.
[13] ZHANG Zhen, GONG Guo fang, WU Wei qiang, LIU Tong, RAO Yun yi, ZHOU Jian jun. Adaptive attitude control of thrust system for hard rock tunnel boring machine[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1870-1877.
[14] WU Zhi-jun, ZHU Shao-peng, LIU Xiao-long, QIU Bin-bin. Power performance and ride comfort analysis of electric all-terrain vehicles[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2227-2233.
[15] LIN Xiao-xia,ZHANG Shu-you,CHEN Jing,ZHAO Zhen. Time varying load course model for co-simulation of
multibody dynamics and finite element
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(9): 1643-1649.