Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1538-1547    DOI: 10.3785/j.issn.1008-973X.2021.08.015
    
Velocity planning strategy for economic cruise of hybrid electric vehicles
Fei JU1(),Wei-chao ZHUANG2,Liang-mo WANG1,*(),Jing-xing LIU1,Qun WANG1
1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2. School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Download: HTML     PDF(1803KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Economic velocity planning in cruise scenario was studied for the power-split hybrid electric vehicle aiming at minimizing the fuel consumption. A reinforced equivalent consumption minimization strategy (R-ECMS) was proposed based on kinetic energy management and equivalent consumption minimization strategy (ECMS). The equivalent coefficient between fuel and electric energy was derived using minimum principle. Meanwhile, the equivalent relationship between kinetic energy and electric energy was established. The vehicle kinetic change and electric consumption were unified into fuel consumption, combined with the equivalent relationship between fuel and electric energy. The non-dominated sorting genetic algorithm was adopted to optimize the parameters in the weight coefficients of the proposed strategy, to ensure battery SOC balance and meet vehicle travel time at the same time. Simulation results demonstrate that R-ECMS can reduce fuel consumption by 8.06% compared with the traditional control strategy ECMS. The proposed R-ECMS not only achieves sub-optimal optimization performance, but also sharply reduces the computing burden, as compared to dynamic programming. Moreover, its performance is robust to various driving scenarios. The simulation using another road profile in reality shows that the R-ECMS can achieve a 6.94% reduction in the corresponding fuel consumption compared to the ECMS. Thus, the R-ECMS has a good application prospect.



Key wordsvehicle engineering      instantaneous control strategy      equivalent fuel consumption      hybrid electric vehicle      dynamic programming      genetic algorithm     
Received: 26 August 2020      Published: 01 September 2021
CLC:  U 461  
Fund:  国家自然科学基金青年科学基金资助项目(51805081)
Corresponding Authors: Liang-mo WANG     E-mail: jufei@njust.edu.cn;liangmo@njust.edu.cn
Cite this article:

Fei JU,Wei-chao ZHUANG,Liang-mo WANG,Jing-xing LIU,Qun WANG. Velocity planning strategy for economic cruise of hybrid electric vehicles. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1538-1547.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.015     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1538


混合动力汽车经济型巡航的车速规划策略

选取功率分流式混合动力汽车为对象,以燃油消耗最小为目标开展巡航场景下的经济车速规划研究. 结合车辆动能管理与等效燃油最小化策略(ECMS),提出增强型等效燃油最小化策略(R-ECMS). 运用极小值原理推导油电等效系数,建立动能与电能间的等效关系;结合电能与燃油之间的等效关系,将车辆动能变化和电能消耗统一转化成燃油消耗. 为了兼顾电池SOC平衡以及车辆通行速度,采取非支配排序遗传算法优化R-ECMS权重系数中的参数. 仿真结果表明,与传统能量管理策略ECMS相比,R-ECMS可以降低8.06%的燃油消耗. 与采用最优算法的动态规划策略相比,R-ECMS能在实现次优的优化效果的同时大幅降低计算时间. 同时,与ECMS相比,R-ECMS在其他仿真场景下能实现6.94%的节油率,具有较好的泛化性能和应用前景.


关键词: 汽车工程,  瞬时控制策略,  等效燃油消耗,  混合动力汽车,  动态规划,  遗传算法 
Fig.1 Configuration of power-split hybrid powertrain
Fig.2 Power split principle of planetary gear sets
部位 参数 数值
车辆 整备质量m /kg 1450
空气阻力系数CD 0.28
迎风面积Af /m2 2.52
滚动阻力系数f 0.015
车轮半径Rtire /m 0.287
主减速比FR 3.3
发动机 最大功率/kW 73
最大扭矩/Nm 142
电机MG1 最大功率/kW 28
电机MG2 最大功率/kW 40
电池 容量/(kW·h) 4.4
行星齿轮 R1/S1R2/S2 3.30,2.63
Tab.1 Basic parameters of power-split hybrid vehicle
Fig.3 Relationship between kinetic weight and vehicle speed
Fig.4 Eco-cruising of hybrid vehicle using R-ECMS
Fig.5 Elevation information and simulation results of speed-planning
Fig.6 Fuel consumption and torque profiles
车速规划策略 ${\rm{F}}{{\rm{C}}_{{\rm{sum}}}}$/g $\Delta {\rm{SOC}}$ ${v_{{\rm{ave}}}}$/(km·h?1 ${t_{{\rm{run}}}}$/s
R-ECMS 64.52 ?0.011 8 59.00 8.5
ECMS 67.84 ?0.013 4 59.00 3.9
DP 62.27 ?0.004 7 58.39 32 980.0
Tab.2 Performance comparison between R-ECMS, ECMS and DP
Fig.7 Elevation information of real-world road
权重特征值 初始值 优化范围 优化结果
${{{a}}_1}$ 8 [1,15] 9.345
${{{b}}_1}$ 0.7 [0.4,1.0] 0.911
${{{a}}_2}$ 8 [1,15] 13.241
${{{b}}_2}$ 0.7 [0.4,1.0] 0.731
Tab.3 Initial value and optimization range of weight eigenvalues
Fig.8 Optimization framework for R-ECMS using NSGA-II
Fig.9 Speed and SOC trajectories on real-world road
Fig.10 Fuel consumption and torque profiles on real road
车速规划策略 ${\rm{F}}{{\rm{C}}_{{\rm{sum}}}}$/g $\Delta {\rm{SOC}}$ ${v_{{\rm{ave}}}}$/(km·h?1) δ/%
DP 224.56 ?0.000 7 57.25 ?
R-ECMS(优化前) 284.26 0.025 5 61.34 6.52
ECMS 304.09 0.018 7 61.34 ?
R-ECMS(优化后) 244.46 0.001 7 60.47 8.06
ECMS 265.89 ?0.002 5 60.47 ?
Tab.4 Performance comparison of various cruising strategies
Fig.11 Results of R-ECMS simulation on another scenario
[1]   ENANG W, BANNISTER C Modelling and control of hybrid electric vehicles: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 1210- 1239
doi: 10.1016/j.rser.2017.01.075
[2]   林歆悠, 吴超宇, 林海波 基于遗传算法系统效率优化的PHEV电量保持模式控制策略[J]. 中国公路学报, 2018, 31 (5): 174- 182
LIN Xin-you, WU Chao-yu, LIN Hai-bo Control strategy of phev charge-sustaining mode based on GA system efficiency optimization[J]. China Journal of Highway and Transport, 2018, 31 (5): 174- 182
doi: 10.3969/j.issn.1001-7372.2018.05.021
[3]   秦大同, 曾育平, 苏岭, 等 基于近似极小值原理的插电式混合动力汽车实时控制策略[J]. 机械工程学报, 2015, 51 (2): 134- 140
QIN Da-tong, ZENG Yu-ping, SU Ling, et al Plug-in hybrid vehicle ’s real-time control strategy based on approximate Pontryagin ’s minimum principle[J]. Chinese Journal of Mechanical Engineering, 2015, 51 (2): 134- 140
doi: 10.3901/JME.2015.02.134
[4]   STOCKAR S, MARANO V, CANOVA M, et al Energy-optimal control of plug-in hybrid electric vehicles for real-world driving cycles[J]. IEEE Transactions on Vehicular Technology, 2011, 60 (7): 2949- 2962
doi: 10.1109/TVT.2011.2158565
[5]   申彩英, 夏超英 基于改进型动态规划算法的串联混合动力汽车控制策略[J]. 控制理论与应用, 2011, (3): 145- 150
SHEN Cai-ying, XIA Chao-ying Control strategy of series hybrid electric vehicle based on improved dynamic programming[J]. Control Theory and Applications, 2011, (3): 145- 150
[6]   LIU J M, PENG H Modeling and control of a power-split hybrid vehicle[J]. IEEE Transactions on Control Systems Technology, 2013, 16 (6): 1242- 1251
[7]   司远, 钱立军, 邱利宏, 等 基于等效油耗最小的四驱混合动力汽车能量管理[J]. 中国机械工程, 2017, (9): 1112- 1117
SI Yuan, QIAN Li-jun, QIU Li-hong, et al Energy management of a 4WD hybrid electric vehicle based on ECMS[J]. China Mechanical Engineering, 2017, (9): 1112- 1117
doi: 10.3969/j.issn.1004-132X.2017.09.019
[8]   解少博, 陈欢, 刘通, 等 基于DP-ECMS的插电式混合动力城市客车能量管理策略研究[J]. 汽车工程, 2017, (7): 736- 741
XIE Shao-bo, CHEN Huan, LIU Tong, et al A research on energy management strategy for a p1ug-in hybrid electric bus based on DP-ECMS strategy[J]. Automotive Engineering, 2017, (7): 736- 741
[9]   REZAEI A, BURL J B, ZHOU B Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2017, 26 (6): 2198- 2205
[10]   ZHOU Q, LI J, SHUAI B Multi-step reinforcement learning for model-free predictive energy management of an electrified off-highway vehicle[J]. Applied Energy, 2019, 255: 113755
doi: 10.1016/j.apenergy.2019.113755
[11]   罗禹贡, 胡束芒, 张书玮 混合动力汽车连续信号灯路口的通行优化[J]. 中国公路学报, 2017, 30 (10): 119- 126
LUO Yu-gong, HU Shu-mang, ZHANG Shu-wei Multi-segment green light optimal speed advisory for hybrid vehicles[J]. China Journal of Highway and Transport, 2017, 30 (10): 119- 126
doi: 10.3969/j.issn.1001-7372.2017.10.015
[12]   钱立军, 邱利宏, 司远, 等 智能网联环境下的混合动力汽车分层能量管理[J]. 汽车工程, 2017, (6): 621- 629
QIAN Li-jun, QIU Li-hong, SI Yuan, et al Hierarchical energy management of hybrid electric vehicles under the environment of intelligent and connected vehicles[J]. Automotive Engineering, 2017, (6): 621- 629
[13]   邱利宏, 钱立军, 杜志远, 等 车联网环境下车辆最优车速闭环快速模型预测控制[J]. 中国机械工程, 2017, (10): 1245- 1252
QIU Li-hong, QIAN Li-jun, DU Zhi-yuan, et al A closed-loop FMPC of optimal velocities for connected vehicles[J]. China Mechanical Engineering, 2017, (10): 1245- 1252
doi: 10.3969/j.issn.1004-132X.2017.10.018
[14]   ZENG X, WANG J A parallel hybrid electric vehicle energy management strategy using stochastic model predictive control with road grade preview[J]. IEEE Transactions on Control Systems Technology, 2015, 23 (6): 2416- 2423
doi: 10.1109/TCST.2015.2409235
[15]   CHEN B, EVANGELOU S, LOT R Hybrid electric vehicle two-step fuel efficiency optimization with decoupled energy management and speed control[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (12): 11492- 11504
doi: 10.1109/TVT.2019.2948192
[16]   UEBEL S, MURGOVSKI N, TEMPELHAHN C, et al Optimal energy management and velocity control of hybrid electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2017, 67 (1): 327- 337
[17]   王建强, 俞倩雯, 李升波, 等 基于道路坡度实时信息的经济车速优化方法[J]. 汽车安全与节能学报, 2014, 5 (3): 257- 262
WANG Jian-qiang, YU Qian-wen, LI Sheng-bo, et al Eco speed optimization based on real-time information of road gradient[J]. Journal of Automotive Safety and Energy, 2014, 5 (3): 257- 262
doi: 10.3969/j.issn.1674-8484.2014.03.006
[18]   武冬梅, 郑敏, 李洋, 等 智能四驱电动汽车预测节能控制研究[J]. 同济大学学报: 自然科学版, 2017, (Suppl.1): 63- 68
WU Dong-mei, ZHENG Min, LI Yang, et al Predictive energy saving control for intelligent 4WD electric vehicle[J]. Journal of Tongji University: Natural Science, 2017, (Suppl.1): 63- 68
[19]   XU S, LI S E, CHENG B, et al Instantaneous feedback control for a fuel-prioritized vehicle cruising system on highways with a varying slope[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18 (5): 1210- 1220
[1] Xin-ying ZHANG,Lu CHEN,Wen-hui YANG. A parallel-machine scheduling problem with time-changing effect and preventive maintenance[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 408-418.
[2] Sheng-tao XIANG,Da WANG. Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 100-110.
[3] Jia-jia WANG,Ying-feng CAI,Long CHEN,Shao-hua WANG,De-hua SHI. Coordinated control of hybrid electric vehicle based on extended state observer estimation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1225-1233.
[4] Tie ZHANG,Liang-liang HU,Yan-biao ZOU. Identification of improved friction model for robot based on hybrid genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 801-809.
[5] Lin-lin JI,Qing-wei WANG,Hao ZHOU,Mei-mei ZHENG. Optimization of cold chain fruit path considering customer satisfaction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 307-317.
[6] Dong-dong JIANG,Dao-fei LI,Xiao-li YU. Model predictive control energy management based ondriver demand torque prediction[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1325-1334.
[7] Ping QI,Hong SHU. Task offloading strategy considering terminal mobility in medical wisdom scenario[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1126-1137.
[8] Xiang-fei MENG,Ren-guang WANG,Yuan-li XU. Torque distribution strategy of pure electric driving mode for dual planetary vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2214-2223.
[9] Xu-ming SU,Cheng-gang FANG,Yu-bin PAN,Wei-wei WU,Ya-ping LI,Lang ZHU. Modeling error of visual measurement system under changing illuminance[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1929-1935.
[10] Fang-fang TAN,Jun-jiang ZHU,Tian-hong YAN,Zhi-qiang GAO,Ling-song HE. Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 40-47.
[11] Xiao-hua ZENG,Bing-bing DONG,Guang-han LI,Da-feng SONG. Fuel-saving factors for hybrid electric system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 645-653.
[12] Guo-jun WANG,Hong-guo XU,Hong-fei LIU. Handling stability analysis of B-double[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 299-306.
[13] Xiao-hua ZENG,Xing-qi WANG,Da-feng SONG,Nan-nan YANG,Zhen-wei WANG. Battery-health conscious energy management optimization in plug-in hybrid electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2206-2214.
[14] ZHANG Man, SHI Shu-ming. Non-isometric crossover evolution algorithm of Markov chain for designing vehicle driving cycles[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1658-1666.
[15] JIAO Long-long, LUO Sen-lin, LIU Wang-tong, PAN Li-min, ZHANG Ji. Fuzz testing for binary program based on genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 1014-1019.