The definition of average integrated energy transfer efficiency and the theoretical calculation model of fuel consumption were proposed by analyzing the hybrid system internal energy flow aiming at hybrid electric system. Some fuel-saving factors were determined combined with the basic fuel-saving ways of hybrid electric system and calculation model, and the calculation model of fuel-saving was deduced. A parallel hybrid electric system based on CVT was taken as the research object in order to verify the correctness and practicability of the proposed calculation model. A global optimization algorithm based on dynamic programming method was proposed to analyze the fuel-saving potential. Each fuel-saving factor mentioned above was analyzed through quantitative study to explicit the contribution to the system fuel-saving rate. The limit fuel consumption was calculated considering the maximum efficiency of each component of the hybrid system based on the detailed analysis and demonstration of fuel-saving factors.
Xiao-hua ZENG,Bing-bing DONG,Guang-han LI,Da-feng SONG. Fuel-saving factors for hybrid electric system. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 645-653.
Tab.2Fuel consumption of dynamic programming algorithm simulation and calculation
项目
${E_{{\rm{reg}}}}$/kJ
$\Delta{f_{\rm{s}}}$/(L·(100 km)?1)
$\gamma $/%
${\delta _{{\rm{fs}}}}$/%
${\delta _{{\rm{fe}}}}$/%
$\sigma $/%
项目1
0
?
0
?
?
?
项目2
1 077.14
0.972 1
16.4
13.1
13.4
2.2
项目3
1 153.83
1.015 6
17.6
13.8
14.2
2.8
项目4
1 223.83
1.049 1
18.6
14.6
15.0
2.7
Tab.3Fuel saving effect of regenerative braking
项目
${b_{{\rm{e, avg}}}}$/(g·kW?1·h?1)
${f_{\rm{s}}}$/(L·(100 km)?1)
$\Delta {f_{\rm{s}}}$/(L·(100 km)?1)
${\delta _{{\rm{fs}}}}$/%
${\delta _{{\rm{fe}}}}$/%
$\sigma $/%
项目1
275
6.407 9
?
?
?
?
项目2
270
6.297 0
0.110 9
1.49
1.50
1.03
项目3
265
6.180 3
0.116 7
1.59
1.61
0.94
项目4
260
6.063 7
0.116 6
1.62
1.64
1.03
Tab.4Fuel saving effect of engine fuel consumption rate
项目
$\eta $/%
$\Delta {f_{\rm{s}}}$/(L·(100 km)?1)
$\Delta {\eta _{{\rm{tr}}}}$/%
${\delta _{{\rm{fs}}}}$/%
${\delta _{{\rm{fe}}}}$/%
$\sigma $/%
项目1
84.3
?
?
?
?
?
项目2
85.3
0.077 5
1.11
1.08
1.10
1.82
项目3
86.3
0.086 1
1.14
1.16
1.14
1.72
项目4
87.3
0.084 6
1.13
1.15
1.12
3.06
Tab.5Fuel saving effect of mechanical transmission efficiency
项目
$\eta {}_{\rm{m}}$/%
$\Delta {f_{\rm{s}}}$/(L·(100 km)?1)
$\Delta {\eta _{{\rm{tr}}}}$/%
${\delta _{{\rm{fs}}}}$/%
${\delta _{{\rm{fe}}}}$/%
$\sigma $/%
项目1
90
?
?
?
?
?
项目2
91
0.019 8
0.26
0.26
0.27
3.70
项目3
92
0.021 3
0.27
0.28
0.27
4.10
项目4
93
0.022 5
0.27
0.28
0.27
3.06
Tab.6Fuel saving effect of motor efficiency
$\eta {}_{\rm{m}}$%
${\eta _{{\rm{tr}}}}$/%
${\delta _{{\rm{fe\_\eta }}}}$/%
无RGB
有RGB
无RGB
有RGB
再生制动贡献值
90
80.17
80.94
?
?
?
91
80.38
81.02
0.26
0.30
0.04
92
80.60
81.11
0.27
0.31
0.04
93
80.82
81.20
0.27
0.32
0.05
Tab.7Difference of fuel saving rate with or without regenerative braking (RGB)
影响因素
因变量变化
$\Delta {\eta _{{\rm{tr}}}}$/ %
${\delta _{{\rm{fe}}}}$
$\Delta {f_{\rm{e}}}$/ (L·(100 km)?1)
发动机平均 燃油消耗率
每降低 5 g/kW·h
?
提升1.50%
0.11
再生制动 回收能量
能量回收率 每增加1%
?
提升0.80%
0.06
机械传动效率
每增加1%
1.13
提升1.12%
0.08
电机平均效率
每增加1%
0.27
提升0.27%
0.02
Tab.8Fuel saving effect of each factor
项目
$\eta {}_{\rm{e}}$/%
$\eta {}_{\rm{m}}$/%
$\eta $/%
${E_{{\rm{reg}}}}$/ kJ
${\eta _{{\rm{tr}}}}$/%
${f_{{\rm{e\_com}}}}$/(L·(100 km)?1)
当前值
28
90
83.3
1 077.138
80.8
6.473 8
极限值
35
92
88.2
1 119.301
87.0
4.971 8
Tab.9Limit fuel consumption of power system
项目
${\delta _{{\rm{fe}}}}$/%
$\Delta {f_{\rm{e}}}$/(L·(100 km)?1)
$\Delta {f_{\rm{e}}}'$/(L·(100 km)?1)
$\sigma $/%
发动机效率
13.93
1.042
0.980
5.95
再生制动 回收能量
0.52
0.039
0.038
0.56
综合能量 传递效率
7.24
0.540
0.552
2.17
耦合项
?1.59
?0.119
?
?
总和
20.13
1.502
1.570
4.33
Tab.10Contribution to fuel saving rate of each factors
[1]
胡均平, 冯东昱, 李科军 混合动力汽车动力系统优化建模仿真研究[J]. 计算机仿真, 2017, 34 (1): 143- 147 HU Jun-ping, FENG Dong-yu, LI Ke-jun Modeling and simulation of hybrid electric vehicle power system optimization[J]. Computer Simulation, 2017, 34 (1): 143- 147
[2]
彭志远, 秦大同, 段志辉, 等 新型混合动力汽车工作模式分析与参数匹配设计[J]. 中国机械工程, 2012, 23 (9): 1122- 1128 PENG Zhi-yuan, QIN Da-tong, DUAN Zhi-hui, et al Operation mode analysis and parameter matching design of a novel hybrid electric vehicle[J]. China Mechanical Engineering, 2012, 23 (9): 1122- 1128
[3]
郑永霞, 赵峰, 罗禹贡, 等 装备CVT的中度混合动力轿车驱动工况下的能量优化策略[J]. 汽车工程, 2014, 36 (1): 2- 6 ZHENG Yong-xia, ZHAO Feng, LUO Yu-gong, et al Energy optimization strategy for the mild hybrid electric vehicle with CVT under drive conditions[J]. Automotive Engineering, 2014, 36 (1): 2- 6
[4]
杨官龙, 秦大同, 刘永刚, 等 CVT插电式混合动力汽车全局优化控制策略[J]. 中南大学学报: 自然科学版, 2014, (12): 4194- 4200 YANG Guan-long, QIN Da-tong, LIU Yong-gang, et al Global optimization control strategy of CVT plug-in hybrid electric vehicle[J]. Journal of Central South University : Science and Technology, 2014, (12): 4194- 4200
[5]
WANG W, SONG R, GUO M, et al Analysis on compound-split configuration of power-split hybrid electric vehicle[J]. Mechanism and Machine Theory, 2014, 78 (8): 272- 288
[6]
江冬冬, 李道飞, 俞小莉 双轴驱动混合动力车辆能量管理策略[J]. 浙江大学学报: 工学版, 2016, 50 (12): 2245- 2253 JIANG Dong-dong, LI Dao-fei, YU Xiao-li Energy management strategy of dual drive hybrid electric vehicle[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (12): 2245- 2253
[7]
KATRA?NIK T Analytical method to evaluate fuel consumption of hybrid electric vehicles at balanced energy content of the electric storage devices[J]. Applied Energy, 2010, 87 (11): 3330- 3339
[8]
YU K, YANG H, TAN X, et al Model predictive control for hybrid electric vehicle platooning using slope information[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (7): 1894- 1909
[9]
陈雪平, 张海亮, 钟再敏, 等 插电式混合动力汽车能耗及其影响因素分析[J]. 同济大学学报: 自然科学版, 2016, 44 (11): 1749- 1754 CHEN Xue-ping, ZHANG Hai-liang, ZHONG Zai-min, et al Simulation and user factors analysis of energy consumption of plug-in hybrid electric vehicles[J]. Journal of Tongji University: Natural Science, 2016, 44 (11): 1749- 1754
[10]
彭文明, 杨慧萍, 李孟良, 等 插电式混合动力电动汽车能耗研究[J]. 武汉理工大学学报, 2013, 35 (9): 144- 148 PENG Wen-ming, YANG Hui-ping, LI Meng-liang, et al Investigation on the energy consumption of PHEV[J]. Journal of Wuhan University of Technology, 2013, 35 (9): 144- 148
[11]
CARLSON R, SHIRK M G, GELLER B M. Factors affecting the fuel consumption of plug-in hybrid electric vehicles [C] // The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle and Symposium Exhibition (EVS 25). Shenzhen: [s.n.], 2010: 1–9.
[12]
KHAYYER P, WOLLAEGER J, ONORI S, et al. Analysis of impact factors for plug-in hybrid electric vehicles energy management [C] // International IEEE Conference on Intelligent Transportation Systems. Anchorage: IEEE, 2012: 1061–1066.
[13]
曾小华, 王庆年, 李骏, 等 混合动力汽车多途径节能定量研究[J]. 汽车工程, 2007, 29 (9): 739- 744 ZENG Xiao-hua, WANG Qing-nian, LI Jun, et al A quantitative on multi-approach energy saving of HEV[J]. Automotive Engineering, 2007, 29 (9): 739- 744
[14]
KIM N, CHA S, PENG H Optimal control of hybrid electric vehicles based on Pontryagin's minimum principle[J]. IEEE Transactions on Control Systems Technology, 2011, 19 (5): 1279- 1287
[15]
巴特, 高印寒, 王庆年, 等 基于动态规划算法的并联混合动力客车控制策略优化[J]. 汽车工程, 2015, 37 (12): 1359- 1365 BA Te, GAO Yin-han, WANG Qing-nian, et al Control strategy optimation for a parallel hybrid electric bus based on dynamic programming algorithm[J]. Automotive Engineering, 2015, 37 (12): 1359- 1365