Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (11): 2214-2223    DOI: 10.3785/j.issn.1008-973X.2020.11.017
    
Torque distribution strategy of pure electric driving mode for dual planetary vehicle
Xiang-fei MENG1,2(),Ren-guang WANG1,*(),Yuan-li XU2
1. China Automotive Technology and Research Center Co. Ltd, Tianjin 300300, China
2. College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
Download: HTML     PDF(3229KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A control strategy of motor efficient working range was designed on the basis of analysing the energy flow characteristics of the dual planetary gear plug-in hybrid electric system, aiming at the problem of torque distribution in dual-motor pure electric drive mode. The difference of working characteristics of the two motors is utilized to achieve the purpose of complementation of the efficient working range, and protect the working efficiency of main motor under the dual-motor torque coupling mode. A dual fuzzy controller control system was designed to solve the problem that the control accuracy is low in traditional fuzzy controller. With the proposed motor working range division method, the control system was used to realize the adaptive adjustment and equivalent amplification of motor working range. The fitness function was constructed by taking the energy conversion efficiency of the drive system and the torque ripple coefficient of the dual-motor as independent variables, and the multi-objective optimization of control rules of the system was carried out based on the genetic algorithm. Simulation results showed that, among the two control strategies, the power consumption of the genetic algorithm-dual fuzzy controller control strategy was lower, the distribution of the integrated efficiency of the system was close to the optimal economic result of dynamic programming (DP), and the control of motor output torque fluctuation was also more reasonable. The comprehensive fuel consumption of 100-kilometers of vehicle of the genetic algorithm-dual fuzzy controller control strategy was 3.27% lower than that of the main motor efficient working range control strategy when the two strategies were applied to hybrid electric system.



Key wordspure electric drive mode      dual motor torque distribution      motor efficient working range      dual fuzzy control system      genetic algorithm multi-objective optimization     
Received: 05 September 2019      Published: 15 December 2020
CLC:  U 469.7  
Corresponding Authors: Ren-guang WANG     E-mail: mengxiangfei@mail.tust.edu.cn;wangrenguang@catarc.ac.cn
Cite this article:

Xiang-fei MENG,Ren-guang WANG,Yuan-li XU. Torque distribution strategy of pure electric driving mode for dual planetary vehicle. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2214-2223.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.11.017     OR     http://www.zjujournals.com/eng/Y2020/V54/I11/2214


双行星排汽车纯电驱动模式的转矩分配策略

针对双电机纯电驱动模式的转矩分配问题,在分析双行星排插电式混合动力系统能量流动特性的基础上,设计主电机高效工作区间控制策略. 该策略利用双电机工作特性的差异达到高效工作区间互补的目的,并在双电机转矩耦合模式下保护主电机的工作效率. 为了解决传统模糊控制器控制精度不高的问题,设计双模糊控制器控制系统,结合所提出的电机工作区间划分方法实现电机工作区间的自适应调节与等效放大. 以驱动系统能量转化效率与电机转矩脉动系数为自变量构建适应度函数,基于遗传算法对系统的控制规则进行多目标寻优. 仿真结果表明,在2种控制策略中遗传算法-双模糊控制器控制策略的耗电量更低,系统综合效率分布情况接近动态规划(DP)经济性最优结果,对电机输出转矩波动情况的控制也更加合理. 将其应用于混合动力系统,车辆百公里综合油耗较主电机高效工作区间控制策略的降低3.27%.


关键词: 纯电驱动模式,  双电机转矩分配,  电机高效工作区间,  双模糊控制系统,  遗传算法多目标寻优 
Fig.1 Structure diagram of dual planetary PHEV powertrain
Fig.2 Dual-motor efficiency MAP and most efficient curve of main motor
Fig.3 Schematic diagram of M2-EWR control strategy mode division
Fig.4 Flowchart of M2-EWR control strategy
Fig.5 Relationship between working range expansion coefficient and vehicle cycle power consumption
Fig.6 Schematic diagram of main motor working range partition
Fig.7 Schematic diagram of dual fuzzy controller control system
Fig.8 Flowchart of fuzzy control rule automatic optimization based on genetic algorithm
Fig.9 Distribution of fitness values of individuals in initial population
Fig.10 Comparison of changes in fitness values of DFCCS and TISOFCS optimal individuals
Fig.11 ORAAC genetic algorithm optimization results
Fig.12 TDC genetic algorithm optimization results
Fig.13 Speed following results of two strategies under CLTC-P condition
Fig.14 Power battery SOC change track under three control methods
%
控制方法 各综合效率区间
0.75~0.80 0.80~0.85 0.85~0.90 0.90~0.93 0.93~0.95 0.95~1.00
M2-EWR控制策略 1.37 8.17 17.56 22.48 30.28 20.14
GA-DFC控制策略 0.20 7.51 17.02 24.09 30.03 21.15
DP结果 0.20 6.74 14.88 25.26 28.76 24.16
Tab.1 Statistical table of comprehensive efficiency distribution of dual-motor system
Fig.15 Comprehensive efficiency distribution of dual-motor system under three control methods
控制方法 TM1_rip TM2_rip
M2-EWR控制策略 13.9410 10.9568
GA-DFC控制策略 7.8289 14.4511
Tab.2 Statistical table of torque ripple coefficients of dual-motor
Fig.16 Dual-motor output torque simulation results
Fig.17 Flowchart of vehicle control strategy mode switching
[1]   熊会元, 何山, 查鸿山, 等 双轴驱动纯电动汽车驱动转矩的分配控制策略[J]. 华南理工大学学报: 自然科学版, 2018, 46 (11): 117- 124
XIONG Hui-yuan, HE Shan, ZHA Hong-shan, et al Control strategy of driving torque distribution for two-alex drive electric vehicle[J]. Journal of South China University of Technology: Natural Science Edition, 2018, 46 (11): 117- 124
[2]   孙宾宾, 高松, 王鹏伟, 等 基于电机损耗机理的双电机四轮驱动电动车转矩分配策略的研究[J]. 汽车工程, 2017, 39 (4): 386- 393
SUN Bin-bin, GAO Song, WANG Peng-wei, et al A research on torque distribution strategy for dual-motor four-wheel-drive electric vehicle based on motor loss mechanism[J]. Automobile Engineering, 2017, 39 (4): 386- 393
[3]   朱绍鹏, 林鼎, 谢博臻, 等 电动汽车驱动力分层控制策略[J]. 浙江大学学报: 工学版, 2016, 50 (11): 2094- 2099
ZHU Shao-peng, LIN Ding, XIE Bo-zhen, et al Driving force hierarchical control strategy of electric vehicle[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (11): 2094- 2099
[4]   SONG P, ZONG C F, TOMIZUKA M A terminal sliding mode based torque distribution control for an individual-wheel-drive vehicle[J]. Journal of Zhejiang University: Science A, 2014, 15 (9): 681- 693
doi: 10.1631/jzus.A1400101
[5]   YANG Y P, SHIH Y C, CHEN J M Real-time torque-distribution strategy for a pure electric vehicle with multiple traction motors by particle swarm optimization[J]. IET Electrical Systems in Transportation, 2016, 6 (2): 76- 87
doi: 10.1049/iet-est.2014.0050
[6]   WANG Z, QU C, ZHANG L, et al Optimal component sizing of a four-wheel independently-actuated electric vehicle with a real-time torque distribution strategy[J]. IEEE Access, 2018, 6: 49523- 49536
doi: 10.1109/ACCESS.2018.2801564
[7]   曾小华, 董兵兵, 李广含, 等 混合动力系统节油影响因素[J]. 浙江大学学报: 工学版, 2019, 53 (4): 645- 653
ZENG Xiao-hua, DONG Bing-bing, LI Guang-han, et al Fuel-saving factors for hybrid electric system[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 645- 653
[8]   孟祥飞, 王微, 徐元利, 等 一种三模式混合动力汽车的行车工况简要分析[J]. 汽车零部件, 2018, 14 (6): 16- 18
MENG Xiang-fei, WANG Wei, XU Yuan-li, et al Brief analysis on driving cases of a tri-mode hybrid electric vehicle[J]. Automobile Parts, 2018, 14 (6): 16- 18
[9]   高建平, 何洪文, 孙逢春 混合动力电动汽车机电耦合系统归类分析[J]. 北京理工大学学报, 2008, 28 (3): 197- 201
GAO Jian-ping, HE Hong-wen, SUN Feng-chun Classification of electromechanical coupling systems in hybrid electric vehicles[J]. Transactions of Beijing Institute of Technology, 2008, 28 (3): 197- 201
[10]   王庆年, 孙树韬, 冀尔聪, 等 混合动力汽车电机最优工作曲线确定与应用[J]. 农业机械学报, 2008, 39 (1): 11- 14
WANG Qing-nian, SUN Shu-tao, JI Er-cong, et al Motor optimal operation line's establishment and application of HEV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39 (1): 11- 14
[11]   丁丽娟, 程杞元. 数值计算方法: 第二版[M]. 北京: 高等教育出版社, 2011: 8.
[12]   LI C Y, LIU G P Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles[J]. Journal of Power Sources, 2009, 192 (2): 525- 533
doi: 10.1016/j.jpowsour.2009.03.007
[13]   GAOUA Y, CAUX S. et al. On-line HEV energy management using a fuzzy logic [C]// 12th International Conference on Environment and Electrical Engineering (EEEIC). Wroclaw: EEEIC, 2013: 46-51.
[14]   COLLOTTA M, PAU G, MANISCALCO V A fuzzy logic approach by using particle swarm optimization for effective energy management in IWSNs[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (12): 9496- 9506
doi: 10.1109/TIE.2017.2711548
[15]   李良峰. 变论域模糊控制算法研究[D]. 成都: 电子科技大学, 2008.
LI Liang-feng. Research on variable domain fuzzy control algorithm [D]. Chengdu: University of Electronic Science and Technology of China, 2008.
[16]   李军, 朱亚洲, 纪雷, 等 混合动力汽车模糊控制策略优化[J]. 汽车工程, 2016, 38 (1): 10- 14
LI Jun, ZHU Ya-zhou, JI Lei, et al Optimization of fuzzy control strategy for hybrid electric vehicle[J]. Automobile Engineering, 2016, 38 (1): 10- 14
doi: 10.3969/j.issn.1000-680X.2016.01.002
[17]   杨世春, 朱传高, 高莹, 等 并联式混合动力汽车遗传模糊控制策略的研究[J]. 汽车工程, 2011, 33 (2): 106- 111
YANG Shi-chun, ZHU Chuan-gao, GAO Ying, et al A research on the genetic fuzzy control strategy for parallel hybrid electric vehicle[J]. Automobile Engineering, 2011, 33 (2): 106- 111
[18]   XIAO Y J, FENG H, YANG H Y, et al Commutation ripple torque and suppression method for permanent magnet brushless DC motor[J]. Jiliang Xuebao/Acta Metrologica Sinica, 2019, 40 (1): 58- 63
[1] YUN Hai-tao, TAN Jian-rong, ZHAO Yu-lan. Power balance control of fuel cell hybrid vehicle[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 488-496.
[2] CHEN Ping-lu, YU Xiao-li, NIE Xiang-hong, FANG Yi-dong. Control strategy for parallel hybrid air-fuel vehicle[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 348-353.