Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (11): 2206-2214    DOI: 10.3785/j.issn.1008-973X.2019.11.019
Energy Engineering     
Battery-health conscious energy management optimization in plug-in hybrid electric vehicles
Xiao-hua ZENG(),Xing-qi WANG,Da-feng SONG*(),Nan-nan YANG,Zhen-wei WANG
State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China
Download: HTML     PDF(2164KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Considering the effect of battery life on the full-life-cycle cost of plug-in hybrid electric vehicle, a multi-objective optimization method of managing the input/output battery power was proposed, with the minimization of vehicle fuel consumption and battery’s health degradation as the optimization objective. The weight coefficient was introduced to transform the multi-objective optimization problem into a single targeted problem, then the dynamic programming (DP) algorithm was employed to achieve global optimization and the optimal weight coefficient was selected according to optimization results. A neural network controller based on optimization results of the optimal weight coefficient was trained and applied to control strategy, in order to solve the problem that the DP algorithm is slow in computation speed and needs working conditions in advance. Simulation results demonstrate that compared with the single-objective optimization of fuel consumption, the multi-objective optimization method can reduce the degradation rate of battery life by 13.5% while increasing the fuel consumption by only 0.5%. The proposed method lessens the degradation rate of battery life effectively with little increase in fuel consumption. The neural network-based control strategy can overcome the shortcomings of the DP algorithm and achieve the similar optimization effect with the DP algorithm, thus it has a good application prospects.



Key wordsvehicle engineering      vehicle energy management optimization      dynamic programming      battery life      neural network     
Received: 05 September 2018      Published: 21 November 2019
CLC:  U 461  
Corresponding Authors: Da-feng SONG     E-mail: zeng.xiaohua@126.com;songdf@126.com
Cite this article:

Xiao-hua ZENG,Xing-qi WANG,Da-feng SONG,Nan-nan YANG,Zhen-wei WANG. Battery-health conscious energy management optimization in plug-in hybrid electric vehicles. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2206-2214.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.11.019     OR     http://www.zjujournals.com/eng/Y2019/V53/I11/2206


考虑电池寿命的插电式混合动力汽车能量管理优化

考虑电池寿命对插电式混合动力汽车全寿命周期成本的影响,以综合燃油消耗和电池寿命衰减最小为目标开展电池充放电功率的多目标优化研究. 引入权重系数将多目标优化问题转化为单目标优化问题,采用动态规划(DP)算法求解实现全局最优,并根据优化结果选择最优权重系数. 为了解决动态规划算法运算速度慢、须预知工况的缺陷,以最优权重系数的优化结果训练神经网络控制器并将其应用于控制策略中. 仿真结果表明,与以油耗为单一目标的优化相比,多目标优化可使电池寿命衰减减少13.5%,而燃油消耗仅增加0.5%,在保证燃油经济性的同时有效减少电池寿命的衰减程度;基于神经网络的控制策略有效克服了动态规划算法的缺点并能达到与其相近的运算效果,具有较好的应用前景.


关键词: 车辆工程,  整车能量管理优化,  动态规划,  电池寿命,  神经网络 
Fig.1 Plug-in planetary hybrid electric system
动力源 参数 数值
发动机 最大功率/kW 80
最高转速/(r·min?1 6 000
电机MG1 额定转速/(r·min?1 6 000
额定扭矩/(N·m) 36
额定功率/kW 23
电机MG2 额定转速/(r·min?1 3 000
额定扭矩/(N·m) 127
额定功率/kW 40
三元锂电池 额定电压/V 346
电池能量/(kW·h) 15
Tab.1 Main configuration parameters of vehicle
Fig.2 Engine universal characteristic curves
Fig.3 Engine optimal operation line
Fig.4 Battery equivalent internal resistance model
Fig.5 Global optimization results of different trip distances
Fig.6 DP solving process of power source working points
μ CE/L QH/(A·h) μ CE/L QH/(A·h)
0 3.76 196.9 0.25 4.14 139.0
0.05 3.77 189.2 0.30 4.44 120.0
0.10 3.78 174.3 0.50 6.73 23.1
0.15 3.81 170.2 0.70 7.12 13.1
0.20 3.98 154.2 1.00 7.18 11.0
Tab.2 Simulation results in 9×NEDC working condition
Fig.7 Global optimization results of different weight coefficients
Fig.8 Battery SOC profile in 9×NEDC working condition
Fig.9 Battery charge-discharge rate in 9×NEDC working condition
Fig.10 Comparison of vehicle power distribution under two weight coefficients with high SOC
Fig.11 Comparison of vehicle power distribution under two weight coefficients with low SOC
行驶里程 μ CE/L CH/(A·h)
8×NEDC 0 3.14 181.7
0.1 3.23 160.4
9×NEDC 0 3.76 196.9
0.1 3.78 174.3
10×NEDC 0 4.30 207.0
0.1 4.39 179.8
Tab.3 Optimization results of different trip distances
Fig.12 Battery SOC profile of different trip distances
Fig.13 Vehicle transmission system structure based on neural network energy management control
Fig.14 Prediction results of SOC change rate based on neural network
Fig.15 Simulation results in 8×NEDC working condition based on NN control strategy
行驶距离 模型 终态SOC CE/L QH/(A·h) t/s
8×NEDC DP 0.317 1 3.23 160.4 43 949
NN 0.313 5 3.26 162.5 1 527
10×NEDC DP 0.312 4 4.39 179.8 53 288
NN 0.311 2 4.43 181.3 1 822
Tab.4 Comparison of simulation results between DP and NN control strategies
[1]   杨林, 胡艳青, 闫斌 基于行驶工况的插电式混合动力汽车电能消耗最优控[J]. 汽车安全与节能学报, 2017, 8 (1): 87- 96
YANG Lin, HU Yan-qing, YAN Bin Optimal charge depleting control of plug-in hybrid electric vehicles based on driving condition[J]. Journal of Automotive Safety and Energy Conservation, 2017, 8 (1): 87- 96
doi: 10.3969/j.issn.1674-8484.2017.01.011
[2]   杨南南. 双行星混联式客车的优化设计与动态控制[D]. 长春: 吉林大学, 2015.
YANG Nan-nan. Optimal design and dynamic control of dual planetary hybrid electric bus [D]. Changchun: Jilin University, 2015.
[3]   张博. 可外接充电混合动力汽车能量管理策略研究[D]. 长春: 吉林大学, 2009.
ZHANG Bo. Study on energy management strategy for plug-in hybrid electric vehicle [D]. Changchun: Jilin University, 2009.
[4]   吴剑, 张承慧, 崔纳新 并联式混合动力汽车的BP网络实时能量管理[J]. 电机与控制学报, 2008, (5): 610- 614
WU Jian, ZHANG Cheng-hui, CUI Na-xin Real-time energy management of parallel hybrid electric vehicle based on BP neural network[J]. Journal of Motor and Control, 2008, (5): 610- 614
doi: 10.3969/j.issn.1007-449X.2008.05.024
[5]   董婷婷. 增程式电动车能量管理及电池寿命研究[D]. 长春: 吉林大学, 2013.
DONG Ting-ting. Study on energy management and battery life for extended-range electric vehicle [D]. Changchun: Jilin University, 2013.
[6]   WANG J, LIU P, HICKS-GARNER J, et al Cycle-life model for graphite-LiFePO4 cells[J]. Journal of Power Sources, 2011, 196 (8): 3942- 3948
doi: 10.1016/j.jpowsour.2010.11.134
[7]   TANG L, RIZZONI G, ONORI S Energy management strategy for HEVs including battery life optimization[J]. IEEE Transactions on Transportation Electrification, 2015, 1 (3): 211- 222
doi: 10.1109/TTE.2015.2471180
[8]   SURI G, ONORI S A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries[J]. Energies, 2016, 96: 644- 653
[9]   ONORI S A new life estimation method for lithium-ion batteries in plug-in hybrid electric vehicles applications[J]. International Journal of Power Electronics, 2012, 4 (3): 302- 319
doi: 10.1504/IJPELEC.2012.046609
[10]   LUENBERGER D G Dynamic programming and modern control theory[J]. American Scientist, 1966, (4): 482A
[11]   林歆悠, 孙冬野, 秦大同 混联式混合动力客车全局优化控制策略研究[J]. 中国机械工程, 2011, 22 (18): 2259- 2263
LIN Xin-you, SUN Dong-ye, QIN Da-tong Development of power-balancing global optimization control strategy for a series-parallel hybrid electric city bus[J]. Chinese Mechanical Engineering, 2011, 22 (18): 2259- 2263
[12]   PULIDO G T, COELLO C A C A constraint handling mechanism for particle swarm optimization[J]. Evolutionary Computation, 2004, 2: 1396- 1403
[13]   胡孝芳. 基于PSO和神经网络的PHEV能量管理策略的研究[D]. 武汉: 武汉理工大学, 2011.
HU Xiao-fang. Research on the energy management strategy of PHEV based on PSO and neural network [D]. Wuhan: Wuhan University of Technology, 2011.
[1] Jia-hui XU,Jing-chang WANG,Ling CHEN,Yong WU. Surface water quality prediction model based on graph neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 601-607.
[2] Hong CHENG,Jia-jie HU,Yong LIU,Yuan-qing YE. Three-dimensional reconstruction algorithm based on fusion of transport of intensity equation and neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 658-664.
[3] Ying-jie ZHENG,Song-rong WU,Ruo-yu WEI,Zhen-wei TU,Jin LIAO,Dong LIU. Metro location point matching and false alarm elimination based on FCM algorithm of target image[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 586-593.
[4] Yi-zhe MAO,Guo-fang GONG,Xing-hai ZHOU,Fei WANG. Identification of TBM surrounding rock based on Markov process and deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 448-454.
[5] Fang LIU,Zhen WANG,Rui-di LIU,Kai WANG. Short-term forecasting method of wind power generation based on BP neural network with combined loss function[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 594-600.
[6] Shi-da CHEN,Qiang LIU,Liang HAN. Gradient sparsification compression approach to reducing communication in distributed training[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 386-394.
[7] Yan-wei ZHAO,Jian ZHANG,Xian-ming ZHOU,Geng-yu WU. Dynamic tracking and precise landing of UAV based on visual magnetic guidance[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 96-108.
[8] Wei-qi CHEN,Jing-chang WANG,Ling CHEN,Yong-qin YANG,Yong WU. Prediction model of multi-factor aware mobile terminal replacement based on deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 109-115.
[9] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.
[10] Deng-wen ZHOU,Jin-yue TIAN,Lu-yao MA,Xiu-xiu SUN. Lightweight image semantic segmentation based on multi-level feature cascaded network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1516-1524.
[11] Yan-nan ZHANG,Xiao-hong HUANG,Yan MA,Qun CONG. Method with recording text classification based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1264-1271.
[12] Xu YAN,Xiao-liang FAN,Chuan-pan ZHENG,Yu ZANG,Cheng WANG,Ming CHENG,Long-biao CHEN. Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1147-1155.
[13] Zheng-rui TAO,Jia-qiang DANG,Jing-yang XU,Qing-long AN,Ming CHEN,Li WANG,Fei REN. High-precision calibration methods of thickness measurement for insulation coation on curved surface based on eddy current[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1218-1227.
[14] Hai-jin WANG,Zong-yu YIN,Zhen-zheng KE,Ying-jie GUO,Hui-yue DONG. Wear monitoring of helical milling tool based on one-dimensional convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 931-939.
[15] Jin-sheng JIANG,Hao-ran REN,Han-ye LI. Seismic data processing based on convolutional autoencoder[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 978-984.