|
|
Optimization of cold chain fruit path considering customer satisfaction |
Lin-lin JI( ),Qing-wei WANG,Hao ZHOU,Mei-mei ZHENG*( ) |
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract A cold chain fruit transportation model with two objectives, i.e., cost and customer satisfaction, was proposed considering the rapid expansion of demands for cold chain fruits and increased importance of customer satisfaction. An improved satisfaction model was proposed to accurately describe the level of customer satisfaction and improve the service response capability of cold chain fruit transportation. The gray-whitening weight function was introduced to construct different levels of customer satisfaction. The customer satisfaction scores were set to divide the factors that affect the perception of satisfaction into different ranks. The survey data was used to support the perception of customer satisfaction. Meanwhile, the improved genetic algorithm (IGA) was proposed to solve the cold chain fruit transportation model. The IGA was developed by introducing the Metropolis of simulated annealing to "super individuals" and regularly updating chromosome group with three kinds of neighborhood search randomly, to avoid the rapid convergence of the genetic algorithm (GA) and reduce the destruction of high-quality populations. Comparative analysis in the case study shows that the IGA is superior to GA and genetic simulated annealing algorithm (GA-SA). And the advantage of IGA becomes more significant as the number of customers increases.
|
Received: 21 July 2020
Published: 09 March 2021
|
|
Fund: 国家自然科学基金资助项目(71802130);上海浦江资助项目(18PJC083) |
Corresponding Authors:
Mei-mei ZHENG
E-mail: 860616956@qq.com;miqi@sjtu.edu.com
|
考虑顾客满意度的冷链水果路径优化
针对冷链水果需求的迅速扩大及顾客满意度重要性的不断提升,提出以成本与满意度为双目标的冷链水果运输模型. 为了准确描述顾客满意度水平,提高冷链水果运输服务的响应能力,提出改进的满意度模型;引入灰度白化权函数构造顾客满意度不同等级阶段,设置不同等级分数将影响满意度感知的因素划分成不同等级,利用调研数据支撑顾客真实满意度感知. 提出改进的遗传算法(IGA)求解该冷链水果运输模型. 此遗传算法通过对“超级个体”引入模拟退火的Metropolis准则,随机选择3种邻域搜索之一定期更新染色体群,来避免传统遗传算法的快速收敛问题以及减轻优质种群被破坏程度. 基于实例的对比分析表明,改进遗传算法的求解效果优于传统遗传(GA)、遗传模拟退火算法(GA-SA),且随着顾客人数增加,改进遗传算法优势更明显.
关键词:
冷链物流优化,
遗传算法,
模拟退火,
顾客满意度,
灰度白化权函数
|
|
[1] |
张东. 电子商务环境下冷链物流的顾客满意度研究[D]. 天津: 天津理工大学, 2018. ZHANG Dong. Research on customer satisfaction of cold chain logistics in E-commerce environment [D]. Tianjin: Tianjin University of Technology, 2018.
|
|
|
[2] |
杜志平, 胡永彪, 陈永立 基于客户满意度的生鲜农产品末端配送的VRP研究[J]. 供应链管理, 2020, 1 (1): 113- 128 DU Zhi-ping, HU Yong-biao, CHEN Yong-li Research on the vehicle routing problem in the distribution of fresh agricultural products based on customer satisfaction[J]. Supply Chain Management, 2020, 1 (1): 113- 128
|
|
|
[3] |
张亚明, 李娜 基于精英单亲遗传算法的冷链物流VRP模型优化研究[J]. 数学的实践与认识, 2016, 46 (4): 87- 96 ZHANG Ya-ming, LI Na Research on elite selection based partheno-genetic algorithm under optimized cold chain logistics VRP model[J]. Mathematics in Practice and Theory, 2016, 46 (4): 87- 96
|
|
|
[4] |
YANG B, HU ZH, WEI C, et al Routing with time-windows for multiple environmental vehicle types[J]. Computers and Industrial Engineering, 2015, 89: 150- 161
doi: 10.1016/j.cie.2015.02.001
|
|
|
[5] |
RABBANI M, TAHERI M, RAVANBAKHSH M A bi-objective vehicle routing problem with time window by considering customer satisfaction[J]. International Journal of Strategic Decision Sciences, 2016, 7 (2): 16- 39
doi: 10.4018/IJSDS.2016040102
|
|
|
[6] |
SIVARAMKUMAR V, THANSEKHAR M R, SARAVANAN R, et al Multi-objective vehicle routing problem with time windows: improving customer satisfaction by considering gap time[J]. Part B: Journal of Engineering Manufacture, 2017, 231 (7): 1248- 1263
doi: 10.1177/0954405415586608
|
|
|
[7] |
韩亚娟, 彭运芳, 魏航, 等 超启发式遗传算法求解带软时间窗的车辆路径问题[J]. 计算机集成制造系统, 2019, 25 (10): 2571- 2579 HAN Ya-juan, PENG Yun-fang, WEI Hang, et al Hyper heuristic genetic algorithm for vehicle routing problem with soft time windows[J]. Computer Integrated Manufacturing Systems, 2019, 25 (10): 2571- 2579
|
|
|
[8] |
ZHANG H Z, ZHANG Q W, MA L, et al A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows[J]. Information Sciences, 2019, 490: 166- 190
doi: 10.1016/j.ins.2019.03.070
|
|
|
[9] |
ZULVIA F E, KUO R J, NUGROHO D Y A many-objective gradient evolution algorithm for solving a green vehicle routing problem with time windows and time dependency for perishable products[J]. Journal of Cleaner Production, 2020, 242: 118428
doi: 10.1016/j.jclepro.2019.118428
|
|
|
[10] |
AFSHAR B M, MEHRABI A, SAFARI H, et al A green vehicle routing problem with customer satisfaction criteria[J]. Journal of Industrial Engineering International, 2016, 12 (4): 529- 544
doi: 10.1007/s40092-016-0163-9
|
|
|
[11] |
梁承姬, 黄涛, 徐德洪, 等 改进遗传算法求解带模糊时间窗冷链配送问题[J]. 广西大学学报, 2016, 41 (3): 826- 835 LIANG Cheng-ji, HUANG Tao, XU De-hong, et al A solution for cold chain distribution with fuzzy time window based on improved Genetic Algorithm[J]. Journal of Guangxi University, 2016, 41 (3): 826- 835
|
|
|
[12] |
王娇. 基于多目标决策的生鲜电商联合配送车辆路径优化研究[D].重庆: 重庆大学, 2017. WANG Jiao. Study on optimization of joint distribution VRP in fresh product E-commerce based on multi-objective decision [D]. Chongqing: Chongqing University, 2017.
|
|
|
[13] |
邓爱民, 毛超, 周彦霆 带软时间窗的集配货一体化 VRP 改进模拟退火算法优化研究[J]. 系统工程理论与实践, 2009, 29 (5): 186- 192 DENG Ai-min, MAO Chao, ZHOU Yan-ting Optimizing research of an improved simulated annealing algorithm to soft time windows vehicle routing problem with pich-up and delivery[J]. Systems Engineering: Theory and Practice, 2009, 29 (5): 186- 192
doi: 10.3321/j.issn:1000-6788.2009.05.024
|
|
|
[14] |
林清国. 基于混合遗传算法的有时间窗车辆路径问题研究[D]. 济南: 山东大学, 2007. LIN Qing-guo. Research of the vehicle routing problem with time windows based on hybrid Genetic Algorithm [D]. Jinan: Shandong University, 2007.
|
|
|
[15] |
高志波, 龙科军, 王倩, 等 车辆路线问题的自适应遗传模拟退火算法[J]. 中国科技论文, 2017, 12 (7): 764- 769 GAO Zhi-bo, LONG Ke-jun, WANG Qian, et al A self adaptive genetically simulated annealing algorithm of vehicle routing problem[J]. China Sciencepaper, 2017, 12 (7): 764- 769
doi: 10.3969/j.issn.2095-2783.2017.07.009
|
|
|
[16] |
RABBANI M, TAHAEI M, FARROKHI A H, et al. Using meta-heuristic algorithms and hybrid of them to solve multi compartment vehicle routing problem [C]// 2017 Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management. Singapore: IEEE, 2017: 1022-1026.
|
|
|
[17] |
XIAO Y Y, ZHAO Q H, KAKU I, et al Development of a fuel consumption optimization model for the capacitated vehicle routing problem[J]. Computers and Operations Research, 2012, 39: 1419- 1431
doi: 10.1016/j.cor.2011.08.013
|
|
|
[18] |
杨珍花, 赖平仲, 汤洋, 等 冷藏车多车型混合配送调度优化[J]. 系统工程, 2015, 33 (10): 28- 36 YANG Zhen-hua, LAN Ping-zhong, TANG Yang, et al Mix distribution dispatch optimization by multi-type refrigerated trucks[J]. Systems Engineering, 2015, 33 (10): 28- 36
|
|
|
[19] |
庞敏, 张建东, 刘明阳 基于白化权函数聚类法的航电系统效能评估[J]. 计算机仿真, 2012, 29 (4): 112- 129 PANG Min, ZHANG Jian-dong, LIU Ming-yang Evaluation of avionics system based on whitenization weight function clustering method[J]. Computer Simulation, 2012, 29 (4): 112- 129
doi: 10.3969/j.issn.1006-9348.2012.04.027
|
|
|
[20] |
韩晓龙. 水果物流网络及节点布局研究[D]. 武汉: 华中农业大学, 2009. HAN Xiao-long. Research on fruit logistics network and nodes layout [D]. Wuhan: Huazhong Agricultural University, 2009.
|
|
|
[21] |
EMRAH D, TOLGA B, GILBERT L The bi-objective pollution-routing problem[J]. European Journal of Operational Research, 2014, 232: 464- 478
doi: 10.1016/j.ejor.2013.08.002
|
|
|
[22] |
康凯, 韩杰, 普玮, 等 生鲜农产品冷链物流低碳配送路径优化研究[J]. 计算机工程与应用, 2019, 55 (2): 259- 265 KANG Kai, HAN Jie, PU Wei, et al Optimization research on cold chain distribution routes considering carbon emissions for fresh agricultural products[J]. Computer Engineering and Applications, 2019, 55 (2): 259- 265
doi: 10.3778/j.issn.1002-8331.1709-0276
|
|
|
[23] |
HERRERA F, LOZANO M, VERDEGAY J L Tackling real-coded genetic algorithms: operators and tools for behavioral analysis[J]. Artificial Intelligence Review, 1998, 12 (4): 265- 319
doi: 10.1023/A:1006504901164
|
|
|
[24] |
CHEN Z, LU Z X, QIAN J A new non-geometric transmission parameter optimization design method for HMCVT based on improved GA and maximum transmission efficiency[J]. Computers and Electronics in Agriculture, 2019, 167: 105034
doi: 10.1016/j.compag.2019.105034
|
|
|
[25] |
GENDREAU M, HERTZ A, LAPORTE G A tabu search heuristicfor the vehicle routing problem[J]. Management Science, 1994, 40 (10): 1276- 1290
doi: 10.1016/j.energy.2016.05.105
|
|
|
[26] |
XIN J F, ZHONG J B, LI S X, et al Greedy mechanism based particle swarm optimization for path planning problem of an unmanned surface vehicle[J]. Sensors, 2019, 19 (21): 4620
doi: 10.3390/s19214620
|
|
|
[27] |
BABIN G, DENEAULT S, LAPORTE G Improvements to the or-opt heuristic for the symmetric travelling salesman problem[J]. Journal of the Operational Research Society, 2007, 58 (3): 402- 407
doi: 10.1057/palgrave.jors.2602160
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|