Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (2): 318-329    DOI: 10.3785/j.issn.1008-973X.2021.02.012
    
Prediction of shield tunnel displacement due to adjacent basement excavation considering continuous deformation of ground
Hong-wei YING1,2,3(),Kang CHNEG1,2,4,Jian-lin YU1,2,*(),Ri-qing XU1,2,Zhi-jian QIU5,Xiao-bo ZHAN6,Jian-she QIN5,Chun-hui LOU1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Development of Zhejiang Province, Hangzhou 310058, China
3. Institue of Geotechnical Engineering Science, Hohai University, Nanjing 210098, China
4. China Railway 11th Bureau Group Co. Ltd, Wuhan 430061, China
5. Hangzhou Metro Group Co. Ltd, Hangzhou 310020, China
6. Zhongtian Construction Group Co. Ltd, Hangzhou 310008, China
Download: HTML     PDF(2682KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A simplified vertical additional load calculation model of basement excavation, considering the unloading effect of bottom as well as sidewalls, was established based on the engineering practice. The vertical additional load at adjacent tunnel caused by basement excavation was given based on the Mindlin solution. A simplified calculation method was proposed for the response of tunnel subjected to an adjacent basement excavation, by introducing a modified subgrade reaction coefficient which could consider the arbitrary tunnel buried depth and regarding the existing tunnel as a continuous Euler-Bernoulli beam resting on Pasternak foundation. The proposed method could consider the effect of tunnel buried depth as well as the ground shear effect, closer to the engineering practice. The rationality and the applicability of the proposed method were verified by comparing it with the three-dimensional finite element method, as well as two groups of published engineering measured data. The main parameters such as elastic modulus and shear modulus of ground, the longitudinal equivalent bending stiffness of tunnel, the angle between tunnel and excavation, the embedded depth of the tunnel, the distance between tunnel and excavation as well as the geometric shape of excavation were all systematically studied. Results indicate that the maximum tunnel vertical displacement, when the tunnel was parallel to the excavation, was 1.60 times of that when the tunnel was perpendicular to the excavation. The maximum displacement of the tunnel can be effectively reduced by increasing the longitudinal bending rigidity of the tunnel, but this “reducing effect” will decrease with the increasing distance between the excavation and the tunnel. The maximum displacement of the tunnel exhibits a non-linear decreasing law with the increase of the tunnel buried depth and the distance between tunnel and excavation. The "long excavation" will affect the displacement and the uplift range of the tunnel, while the "short excavation" mainly affects the tunnel displacement. Results could provide some theoretical support for reasonably predicting the response of existing tunnel due to adjacent excavation.



Key wordsbasement excavation      tunnel vertical displacement      arbitrary depth      shear effect      long excavation      short excavation     
Received: 29 November 2019      Published: 09 March 2021
CLC:  TU 375.2  
Fund:  国家自然科学基金资助项目(41672264,51678523);浙江省重点研发计划资助项目(2019C03103)
Corresponding Authors: Jian-lin YU     E-mail: ice898@zju.edu.cn;yujianlin72@126.com
Cite this article:

Hong-wei YING,Kang CHNEG,Jian-lin YU,Ri-qing XU,Zhi-jian QIU,Xiao-bo ZHAN,Jian-she QIN,Chun-hui LOU. Prediction of shield tunnel displacement due to adjacent basement excavation considering continuous deformation of ground. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 318-329.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.02.012     OR     http://www.zjujournals.com/eng/Y2021/V55/I2/318


考虑地基变形连续的基坑开挖诱发邻近盾构隧道位移预测

从工程实际出发,建立考虑基坑坑底及侧壁卸荷作用的基坑开挖引起的附加荷载计算模型;基于Mindlin解给出由基坑开挖所引起的邻近隧道处的竖向附加荷载;引入能考虑隧道任意埋深效应的修正基床反力系数, 将既有隧道简化为搁置于Pasternak地基上的Euler-Bernoulli梁,进而提出基坑开挖下邻近既有隧道响应的简化计算方法. 所提方法能考虑隧道埋深效应以及地基剪切效应,与工程实际更为接近. 通过与三维有限元以及2组已发表工程实测数据的对比,验证所提简化计算方法的合理性与适用性. 针对地基弹性模量、地基剪切模量、隧道纵向等效抗弯刚度、隧道-基坑夹角、隧道埋深、隧道-基坑间距以及基坑几何形状等主要参数对隧道纵向位移的影响进行系统分析. 结果表明:隧道与基坑平行工况下的隧道最大位移是垂直工况下的1.60倍;提高隧道纵向抗弯刚度可以有效减小隧道的最大位移,但这种“削弱作用”会随隧道-基坑间距的增大而减小;随着隧道埋深、隧道-基坑间距的增大,隧道最大位移呈非线性递减规律;基坑的“长开挖”会影响隧道的位移和隧道隆起范围,而“短开挖”则主要影响隧道的位移. 研究成果可以为较为合理地预测既有盾构隧道在邻近基坑开挖下的响应规律提供理论支持.


关键词: 基坑开挖,  隧道竖向位移,  任意埋深,  剪切效应,  长开挖,  短开挖 
Fig.1 Calculation model of influence of basement excavation on adjacent tunnel
Fig.2 Plane view of relative position between basement and existing tunnel
Fig.3 Three-dimensional finite element model and mesh of interaction between excavation and tunnel
D /mm ls /m t /m Ec /MPa m lb /mm Eb /MPa (EI)eq /(MN·m2)
6200 1.2 0.35 3.45×104 17 400 20.6×105 78000
Tab.1 Parameters of tunnel segment
土层 $E_{50}^{{\rm{ref}}}/{\rm{MPa} }$ $E_{{\rm{oed}}}^{{\rm{ref}}}\;/{\rm{MPa} }$ $E_{ {\rm{ur} } }^{{\rm{ref}}}/{\rm{MPa} }$ $G_0^{{\rm{ref}}}/{\rm{MPa} }$ γ0.7 Rf c′ /kPa φ′ /(°) D0 /m
黏土 4 4 12 36 0.0001 0.9 6 20 50
Tab.2 Physical and mechanics parameters of soil
Fig.4 Comparison of displacement between finite element method and proposed method
Fig.5 Comparison of bending moment between finite element method and proposed method
Fig.6 Relative position between existing shield tunnel and above-basement
土层 h /m γ /(kN?m?3) Es0.1?0.2 /MPa $\nu $
①人工填土 1.82 18.5 ? ?
②-1褐黄色粉质黏土 1.13 18.4 6.34 0.40
②-2灰黄色粉质黏土 0.82 17.7 4.43 0.30
③-1灰色淤泥质粉质黏土 1.08 17.7 4.43 0.30
③-2灰色砂质粉土 2.28 18.3 9.72 0.35
③-3灰色淤泥质粉质黏土 2.46 17.2 3.63 0.35
④灰色淤泥质黏土 8.70 16.6 2.27 0.35
⑤-1 灰色黏土 2.41 17.9 4.07 0.40
⑤-2灰色粉质黏 3.89 18.1 4.55 0.40
⑥暗绿草黄色粉质黏土 4.25 19.4 6.09 0.35
Tab.3 soil parameters
Fig.7 Comparison between measured and calculated results of upline
Fig.8 Comparison between measured and calculated results of downlink
Fig.9 Diagram of relative position between tunnel and excavation
Fig.10 Displacement of tunnel with different angles between excavation and subjacent tunnel
Fig.11 Maximum displacement of tunnel with different angles between excavation and subjacent tunnel
Fig.12 Displacement of tunnels with different burial depth
Fig.13 Maximum displacement of tunnels with different burial depth
Fig.14 Displacement of tunnels with different distances between tunnel and excavation
Fig.15 Maximum displacement of tunnels with different distances between tunnel and excavation
Fig.16 Maximum displacement of tunnels with different modulus
Fig.17 Maximum displacement of tunnels with different shear modulus of shear layer
Fig.18 Maximum displacement of tunnels with different equivalent bending stiffness
Fig.19 Displacement of tunnels with different excavation shapes
Fig.20 Maximum displacement of tunnels with different excavation shapes
[1]   CHANG C T, SUN C W, DUANN S W, et al Response of a Taipei Rapid Transit System (TRTS) tunnel to adjacent excavation[J]. Tunnelling and Underground Space Technology, 2001, 16 (3): 151- 158
[2]   BRIAN S, PAUL J V Results of monitoring at the British Library excavation[J]. Geotechnical Engineering, 2014, 167 (2): 99- 116
[3]   魏纲, 李钢, 苏勤卫 基坑工程对运营地铁隧道影响的实测分析[J]. 现代隧道技术, 2014, 51 (1): 179- 185
WEI Gang, LI Gang, SU Qin-wei Analysis of the influence of foundation pit construction on an operating metro tunnel based on field measurement[J]. Modern Tunnelling Technology, 2014, 51 (1): 179- 185
[4]   魏纲 基坑开挖对下方既有盾构隧道影响的实测与分析[J]. 岩土力学, 2013, 34 (5): 1421- 1428
WEI Gang Measurement and analysis of impact of foundation pit excavation on below existed shield tunnels[J]. Rock and Soil Mechanics, 2013, 34 (5): 1421- 1428
[5]   ZHENG G, YANG X, ZHOU H, et al A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations[J]. Computers and Geotechnics, 2018, 95 (3): 119- 128
[6]   ZHENG G, YANG X, ZHOU H, et al Reply to the discussion on“asimplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations” by Far et al[J]. Computers and Geotechnics, 2019, 109 (5): 297
[7]   NG C W W, SHI J, HONG Y Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand[J]. Canadian Geotechnical Journal, 2013, 50 (8): 874- 888
[8]   HUANG X, HUANG H, ZHANG D Centrifuge modelling of deep excavation overexisting tunnels[J]. Proceedings of the ICE- Geotechnical Engineering, 2012, 167 (1): 3- 18
[9]   程康, 徐日庆, 应宏伟, 等 既有隧道在上覆基坑卸荷下的形变响应简化算法[J]. 岩石力学与工程学报, 2020, 39 (3): 637- 648
CHNEG Kang, XU Ri-qing, YING Hong-wei, et al Simplified method for calculating the response of existing tunnel due to overlying basement excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (3): 637- 648
[10]   梁荣柱, 林存刚, 夏唐代, 等 考虑隧道剪切效应的基坑开挖对邻近隧道纵向变形分析[J]. 岩石力学与工程学报, 2017, (1): 228- 238
LIANG Rong-zhu, LIN Cun-gang, XIA Tang-dai, et al Analysis on the longitudinal deformation of tunnels due to pit excavation considering the tunnel shearing effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, (1): 228- 238
[11]   LIANG R Z, XIA T D, HUANG M S, et al Simplified method for evaluating the effects of adjacent excavation on shield tunnel considering the shearing effect[J]. Computers and Geotechnics, 2017, 81: 167- 187
[12]   张治国, 黄茂松, 王卫东 邻近开挖对既有软土隧道的影响[J]. 岩土力学, 2009, 30 (5): 1373- 1379
ZHANG Zhi-guo, HUANG Mao-song, WANG Wei-dong Responses of existing tunnels induced by adjacent excavation in soft soils[J]. Rock and Soil Mechanics, 2009, 30 (5): 1373- 1379
[13]   姜兆华, 张永兴 基坑开挖对邻近隧道纵向位移影响的计算方法[J]. 土木建筑与环境工程, 2013, 35 (1): 7- 11
JIANG Zhao-hua, ZHANG Yong-xing Calculation of influence on longitudinal deformation of adjacent tunnels due to excavation[J]. Journal of Civil, Architectural and Environmental Engineering, 2013, 35 (1): 7- 11
[14]   ZHANG Z, HUANG M, WANG W Evaluation of deformation response for adjacent tunnels due to soil unloading in excavation engineering[J]. Tunneling and Underground Space Technology incorporating Trenchless Technology Research, 2013, 38 (3): 244- 253
[15]   魏纲, 赵城丽 基坑开挖引起临近地铁隧道的附加荷载计算方法[J]. 岩石力学与工程学报, 2016, 35 (Suppl.1): 3408- 3417
WEI Gang, ZHAO Cheng-li Calculation method of additional load of adjacent metro tunnels due to foundation pit excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (Suppl.1): 3408- 3417
[16]   广州地铁设计研究院有限公司. 城市轨道交通结构安全保护技术规范: GJJ/T 202—2013 [S]. 北京: 中国建筑工业出版社, 2013.
[17]   VESIC A S Bending of beams resting on isotropic elastic solid[J]. Journal of Soil Mechanics and Foundation Engineering, ASCE, 1961, 87 (2): 35- 53
[18]   ATTEWELL P B, YEATES J, SELBY A R. Soil movements induced by tunneling and their effects on pipelines and structures [M]. London: Blackie and Son Ltd, 1986: 128-132.
[19]   YU J, ZHANG C, HUANG M Soil-pipe interaction due to tunneling: assessment of Winkler modulus for underground pipelines[J]. Computers and Geotechnics, 2013, 50 (5): 17- 28
[20]   LIANG R, WU W, YU F, et al Simplified method for evaluating shield tunnel deformation due to adjacent excavation[J]. Tunneling and Underground Space Technology, 2018, 71: 94- 105
[21]   ZHANG Z, HUANG M, XU C, et al Simplified solution for tunnel-soil-pile interaction in Pasternak′s foundation model[J]. Tunneling and Underground Space Technology, 2018, 78: 146- 158
[22]   徐日庆, 程康, 应宏伟, 等 考虑埋深与剪切效应的基坑卸荷下卧隧道的形变响应[J]. 岩土力学, 2020, (Suppl.1): 195- 207
XU Ri-qing, CHNEG Kang, YING Hong-wei, et al Response of tunnel induced by pit excavation considering the tunnel shearing and depth effect[J]. Rock and Soil Mechanics, 2020, (Suppl.1): 195- 207
[23]   LIANG R, XIA T, HONG Y, et al Effects of above-crossing tunneling on the existing shield tunnels[J]. Tunneling and Underground Space Technology, 2016, 58: 159- 176
[24]   梁荣柱, 夏唐代, 胡军华, 等 新建隧道近距离上穿施工对既有地铁隧道纵向变形分析[J]. 岩土力学, 2016, 37 (Suppl.1): 391- 399
LIANG Rong-zhu, XIA Tang-dai, HU Jun-hua, et al Analysis of longitudinal displacement of existing metro tunnel due to construction of above-crossing new tunnel in close distance[J]. Rock and Soil Mechanics, 2016, 37 (Suppl.1): 391- 399
[25]   康成, 梅国雄, 梁荣柱, 等 地表临时堆载诱发下既有盾构隧道纵向变形分析[J]. 岩土力学, 2018, 39 (12): 4605- 4616
KANG Cheng, MEI Guo-xiong, LIANG Rong-zhu, et al Analysis of the longitudinal deformation of existing shield tunnel induced by temporary surface surcharge[J]. Rock and Soil Mechanics, 2018, 39 (12): 4605- 4616
[26]   志波由纪夫, 川岛一彦, 大日方尚己, 等. 应答变位法にょるツ—ルドトンネルの地震时断面力の算定[C]// 土木学会论文集. 东京: 土木学会出版委员会, 1989: 385-394.
SHIBA Y, KAWASHIMA K, OBINATA N, et al. Evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analysis [C]// Proceedings of the Japan Society of Civil Engineers. Tokyo: Publication Committee of Civil Engineering Society, 1989: 385-394.
[27]   TANAHASHI H Formulas for an infinitely long Bernoulli: Euler beam on thePasternak model[J]. Soils Foundation, 2004, 44 (5): 109- 118
[28]   徐凌. 软土盾构隧道纵向沉降研究[D]. 上海: 同济大学, 2005.
XU Ling. Study on the longitudinal settlement of shield tunnel in soft soil [D]. Shanghai: Tongji University, 2005.
[29]   张冬梅, 冉龙洲, 闫静雅, 等 注浆对盾构隧道渗漏引起的孔隙水压力变化的影响[J]. 岩土力学, 2017, 38 (12): 3427- 3435
ZHANG Dong-mei, RAN Long-zhou, YAN Jing-ya, et al Effect of grouting on tunnel leakage-induced pore pressure change in saturated soft soils[J]. Rock and Soil Mechanics, 2017, 38 (12): 3427- 3435
[1] Xing-lang FAN,Sheng-jie GU,Jia-fei JIANG,Xi WU. Computational method of punching-shear capacity of concrete slabs reinforced with FRP bars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1058-1067.