Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (9): 1741-1748    DOI: 10.3785/j.issn.1008-973X.2019.09.013
Computer Science and Artificial Intelligence     
Vehicle extraction from remotely sensed images based on rectangle marked point processes
Hui YU(),Deng-feng CHAI*()
Institute of Space Information and Technique, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1963KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A rectangle marked point processes was proposed for vehicle identification and extraction from remotely sensed images, and to analyze the distribution and arrangement of a large number of vehicles. A prior model was developed to represent spatial distribution of vehicles, and a data term was applied to establish the relationship between the model and image.The optimal configuration was searched by simulated annealing coupled with Reversible Jump Markov Chain Monte Carlo, so that vehicles could be identified and extracted automatically. The experimental results show that the proposed method works well for the scenes of road and parking lot. The extraction precision is 99%, and the recall is about 90%. The constrain of prior model can solve the problem of vehicle overlapping and uncertain direction well, and the extraction results are better than that of the traditional algorithm.



Key wordsrectangle marked point processes      vehicle extraction      template match      simulated annealing      Reversible Jump Markov Chain Monte Carlo     
Received: 21 July 2018      Published: 12 September 2019
CLC:  TP 751.1  
Corresponding Authors: Deng-feng CHAI     E-mail: 21438031@zju.edu.cn;chaidf@zju.edu.cn
Cite this article:

Hui YU,Deng-feng CHAI. Vehicle extraction from remotely sensed images based on rectangle marked point processes. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1741-1748.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.09.013     OR     http://www.zjujournals.com/eng/Y2019/V53/I9/1741


基于长方形点过程的遥感图像汽车提取

针对遥感图像中汽车的识别和提取问题,分析大规模数量汽车的分布和排列,提出基于长方形点过程的汽车分布概率模型. 采用先验模型刻画汽车在空间中的分布规律,采用数据项表达模型与图像的联系. 采用模拟退火策略结合可逆跳马尔科夫链蒙特卡洛采样方法,对模型进行优化求解,实现图像中汽车的自动识别和提取. 实验结果表明,所提方法能很好地用于道路和停车场等规则场景,提取精确度达到99%,回收率达到90%;由于先验模型的约束可以很好地解决汽车相互重叠和方向摇摆的问题,汽车提取的效果比传统算法更好.


关键词: 长方形点过程,  汽车提取,  模板匹配,  模拟退火,  可逆跳马尔科夫链蒙特卡洛采样 
Fig.1 Geometric model of vehicle in images
Fig.2 Overlapping relationship of vehicles’ distribution
Fig.3 Direction relationship of vehicles’ distribution
实验序号 λF α β
1 100 1.0 1.0
2 100 0 1.0
3 1 000 0 1.0
4 1 000 0 0.9
Tab.1 Different parameter settings for prior model
Fig.4 Vehicles’ distribution results with different parameters
Fig.5 Image results after template match processing
Fig.6 Extraction results of image with vehicles on road
Fig.7 Extraction results of image with vehicles on square
图像编号 NTP NFP NFN PN RN
1 112 1 8 0.991 2 0.933 3
2 99 1 3 0.990 0 0.970 6
3 802 4 71 0.995 0 0.918 7
4 323 1 18 0.996 9 0.947 2
5 178 1 2 0.994 4 0.988 9
Tab.2 Evaluation results of vehicle extraction
Fig.8 Comparison of experimental results with template match and marked point processes
[1]   MOON H, CHELLAPPA R, ROSENFELD A Performance analysis of a simple vehicle detection algorithm[J]. Image and Vision Computing, 2002, 20 (1): 1- 13
doi: 10.1016/S0262-8856(01)00059-2
[2]   TAN Q, WANG J, ALDRED D A. Road vehicle detection and classification from very-high-resolution color digital orthoimagery based on object-oriented method [C] // IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2008. Boston: IEEE, 2008, 4: IV-475-IV-478.
[3]   GLEASON J, NEFIAN A V, BOUYSSOUNOUSSE X, et al. Vehicle detection from aerial imagery [C] // 2011 IEEE International Conference on Robotics and Automation (ICRA). Shanghai: IEEE, 2011: 2065-2070.
[4]   LIU K, MATTYUS G Fast multiclass vehicle detection on aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (9): 1938- 1942
doi: 10.1109/LGRS.2015.2439517
[5]   CHEN Z, WANG C, LUO H, et al Vehicle detection in high-resolution aerial images based on fast sparse representation classification and multiorder feature[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (8): 2296- 2309
doi: 10.1109/TITS.2016.2517826
[6]   CAO L, LUO F, CHEN L, et al Weakly supervised vehicle detection in satellite images via multi-instance discriminative learning[J]. Pattern Recognition, 2017, 64: 417- 424
doi: 10.1016/j.patcog.2016.10.033
[7]   YANG M Y, LIAO W, LI X, et al. Deep Learning for vehicle detection in aerial images [C] // 2018 25th IEEE International Conference on Image Processing (ICIP). Athens: IEEE, 2018: 3079-3083.
[8]   STOICA R, DESCOMBES X, ZERUBIA J A Gibbs point process for road extraction from remotely sensed images[J]. International Journal of Computer Vision, 2004, 57 (2): 121- 136
doi: 10.1023/B:VISI.0000013086.45688.5d
[9]   GE W, COLLINS R T. Marked point processes for crowd counting [C] // IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 2913-2920.
[10]   YU Y, LI J, GUAN H, et al A marked point process for automated building detection from lidar point-clouds[J]. Remote Sensing Letters, 2013, 4 (11): 1127- 1136
doi: 10.1080/2150704X.2013.846487
[11]   KOWAL M, KORBICZ J. Marked point process for nuclei detection in breast cancer microscopic images [C] // Polish Conference on Biocybernetics and Biomedical Engineering. Poland: Springer, 2017: 230-241.
[12]   VAN LIESHOUT M N M. Markov point processes and their applications [M]. London: Imperial College Press, 2000.
[13]   张东萍. 改进 Grabcut 算法在无人机影像船只识别中的应用与研究[D]. 天津: 天津大学, 2013.
ZHANG Dong-ping. Applications and research of improved Grabcut algorithm on ship detection from UAV images[D]. Tianjin: Tianjin University, 2013.
[14]   CHAI D, SCHMIDT A, HEIPKE C Detecting linear features by spatial point processes[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, 2016, 41: 841- 848
[15]   GREEN P J Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[J]. Biometrika, 1995, 82 (4): 711- 732
doi: 10.1093/biomet/82.4.711
[16]   GAMERMAN D, LOPES H F. Markov chain Monte Carlo: stochastic simulation for Bayesian inference [M]. New York: Chapman and Hall/CRC, 2006.
[17]   GELMAN A, STERN H S, CARLIN J B, et al. Bayesian data analysis [M]. New York: Chapman and Hall/CRC, 2013.
[18]   GREEN P J, ?ATUSZY?SKI K, PEREYRA M, et al Bayesian computation: a summary of the current state, and samples backwards and forwards[J]. Statistics and Computing, 2015, 25 (4): 835- 862
doi: 10.1007/s11222-015-9574-5
[19]   石利平 模拟退火算法及改进研究[J]. 信息技术, 2013, (2): 176- 178
SHI Li-ping Research on simulated annealing algorithm and improvements[J]. Information Technology, 2013, (2): 176- 178
doi: 10.3969/j.issn.1009-2552.2013.02.051
[1] Lin-lin JI,Qing-wei WANG,Hao ZHOU,Mei-mei ZHENG. Optimization of cold chain fruit path considering customer satisfaction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 307-317.
[2] HUANG Jia-jun, TENG Lai, ZHANG Chao-jie, WANG Chun-hui, PIAO Cheng-yong. I/Q imbalance calibration based on simulated annealing algorithm[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2218-2225.
[3] YUAN You-wei-, YU Jia, ZHENG Hong-sheng, WANG Jiao-jiao. Cloud workflow scheduling algorithm based on novelty ranking and multi-quality of service[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1190-1196.
[4] CHENG Zhun,LU Zhi xiong,GONG Jia hui,DIAO Xiu yong. Transfer function of steering system and acquisition method of ideal steering ratio[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1276-1283.
[5] CHENG Hua-qiang, LUO Yao-zhi, XU Xian. Nonlinear force control of adaptive beam sting structure[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1155-1161.
[6] ZHANG Ding-ni, LIU Yi. Reentry trajectory optimization based on improved genetic
algorithm and sequential quadratic programming
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 161-167.
[7] LIU Ye-feng, XU Guan-qun, PAN Quan-ke, CHAI Tian-you. Magnetic material molding sintering production scheduling optimization method and its application[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1517-1523.
[8] XIE Yu-jiang, LIU Gao. Algorithmic modification of  acoustic impedance inversion
based on wavelet edge analysis and modelling: a case of
reservoir distribution prediction in h8 segment of MOU gas field,China
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1680-1684.
[9] LIU Ai-jun, YANG Yu, LI Fei, XING Qing-song, LU Hui, ZHANG Yu-dong. Chaotic simulated annealing particle swarm optimization algorithm research and its application[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1722-1730.
[10] TU Yue-wen, CHEN Hang, FU Xiu-quan,LI Ding-li,HUANG Chao,TANG Ya-wei,YE Shu-ming. Beats clustering based algorithm for fast recognition of
motion artifact sections in Holter system
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1148-1156.
[11] XU Jing-hua, ZHANG Shu-you, YI Guo-dong, TU Li, GUANG Yao. Object variation oriented kinematics optimization design
for manipulator
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 209-216.
[12] SHU Yu, TU Feng, HONG Le-Yu. Hard real-time communication in fibre channel based on
bandwidth reservation
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1698-1704.
[13] CHEN Xiao-Gang, XU Gao, WANG Bei, JIANG Zheng-Wei, JIANG Quan-Yuan, GUO Chuang-Xin, CAO Yi-Jia. Algorithm of optimal phasor measurement unit placement  considering multiconstraints[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(3): 539-543.
[14] LIN Lan-Fen, OU Guan-Nan, et al. Hybrid genetic algorithm for multi-constrained automatic cotton blending[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 801-806.