Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (4): 817-827    DOI: 10.3785/j.issn.1008-973X.2024.04.017
    
Seismic damage characteristics of steel tower of cable-stayed bridge and influence of input ground motion parameters
Zhou JIA(),Xu XIE*(),Tianjia WANG,Cheng CHENG
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(5212KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Taking a single-tower steel cable-stayed bridge with a main span of 165 m as a research object, a refined calculation model of the steel tower was established. The historical seismic records adjusted by peak acceleration were selected as the ground motion input for the elasto plastic time-history analysis in the longitudinal direction of the bridge. The local instability of the steel plates and ultra-low cycle fatigue cracking characteristics of the steel tower were studied, and the applicability of the fiber model was discussed. Results show that the Pushover analysis method loaded along the height can predict the sequence and location of the seismic plastic development in the longitudinal direction of the steel tower. Although the fiber model can obtain the elastic-plastic seismic displacement response and the seismic damage location of the steel tower, it cannot accurately evaluate the residual deformation and the damage degree of the structure. The peak ground velocity (PGV)/peak ground acceleration (PGA) value of the input ground motion is an indicator that affects the degree of structural seismic damage. Under the same PGA, the seismic damage of the steel tower caused by ground motions with larger PGV/PGA values is significant. Therefore, the seismic performance verification of steel towers cable-stayed bridges should adopt the ground motion time history with larger PGV/PGA values.



Key wordssteel tower      seismic damage      near-fault ground motions      local instability of steel plate      ultra-low cycle fatigue damage     
Received: 08 April 2023      Published: 27 March 2024
CLC:  U 448.27  
Fund:  国家自然科学基金资助项目(52178174,51878606).
Corresponding Authors: Xu XIE     E-mail: 22112280@zju.edu.cn;xiexu@zju.edu.cn
Cite this article:

Zhou JIA,Xu XIE,Tianjia WANG,Cheng CHENG. Seismic damage characteristics of steel tower of cable-stayed bridge and influence of input ground motion parameters. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 817-827.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.04.017     OR     https://www.zjujournals.com/eng/Y2024/V58/I4/817


斜拉桥钢塔地震损伤特性及输入地震动参数的影响

以主跨为165 m的独塔钢斜拉桥为研究对象,建立精细化钢塔计算模型. 选取经峰值加速度调整后的历史地震记录作为地震动输入,分析顺桥向弹塑性时程反应,研究钢塔的钢板局部失稳以及超低周疲劳开裂特性,讨论纤维模型的适用性. 结果表明,沿高度方向加载的Pushover法能够预测钢塔顺桥向地震塑性发展的顺序和位置;纤维模型能够获得钢塔的弹塑性地震位移反应以及地震损伤位置,不能精确评价结构残余变形与损伤程度;输入地震动的峰值地面速度(PGV)/峰值地面加速度(PGA)值是影响结构地震损伤程度的指标;当PGA相同时,PGV/PGA值越大的地震动引起的钢塔地震损伤越显著,钢塔斜拉桥抗震性能验算应选用PGV/PGA值大的地震动时程.


关键词: 钢塔,  地震损伤,  近断层地震动,  钢板局部失稳,  超低周疲劳损伤 
Fig.1 Overview of cable-stayed bridge
mm
截面号δAδBbR-A×δR-AbR-B×δR-B
SEC13232230×22230×22
SEC22825230×22200×19
SEC32525200×19200×19
SEC42222200×19200×19
Tab.1 Section parameters of main tower
钢板位置RRRF
I0.5290.529
II0.4950.701
III0.3430.329
IV0.5090.706
Tab.2 Width-thickness ratios of steel plate at tower bottom
Fig.2 Position of steel plates
Fig.3 Response spectra for seismic design
Fig.4 Analysis model of bridge
参数数值参数数值
σ0/MPa391.2ξ1245
Q/MPa21ξ2155
biso10ξ350
Ckin,i (i=1, 2, 3, 4)/MPa1 800ξ430
Tab.3 Chaboche model parameters of Q355 steel
Fig.5 Main modes of bridge
模态振型f/HzMeff/%
XYZ
1主梁一阶竖弯(面内)0.451011
2塔对称侧弯0.670140
3塔反对称侧弯0.74000
4主梁二阶竖弯(面内)0.852021
5主梁一阶扭转1.06000
6主梁一阶侧弯1.150310
7主梁三阶竖弯(面内)1.250031
8主梁纵飘(面内)1.578001
9主梁二阶扭转1.75000
10主梁四阶竖弯(面内)1.84106
Tab.4 Natural vibration characteristics of bridge
Fig.6 Load modes of Pushover analysis method
Fig.7 Calculation results of Pushover analysis method
Fig.8 Input ground motion and response spectrum
Fig.9 Plastic zone distribution of bridge tower
位置台站号λ/(°)ω/(°)
破裂前方TCU-036120.69624.449
破裂前方TCU-052120.73924.198
破裂区上盘TCU-084120.90023.883
破裂区下盘TCU-076120.67623.908
破裂后方TCU-109120.57124.085
破裂后方CHY-087120.51923.385
Tab.5 Geographic location of stations
Fig.10 Adjusted seismic response spectrums
位置台站号G/km(PGV/PGA)/s
破裂前方TCU-036-EW19.830.429
破裂区上盘TCU-052-EW0.660.431
破裂区上盘TCU-084-EW8.200.130
破裂区下盘TCU-076-EW2.740.153
破裂区下盘TCU-109-EW13.060.383
破裂后方CHY-087-EW37.480.077
Tab.6 Fault distance of stations and PGV/PGA values of ground motion
位置台站号dx/mμm
拉应变压应变
破裂前方TCU-0360.0774.43?3.90
破裂区上盘TCU-0520.08211.80?6.82
破裂区上盘TCU-0840.0004.58?4.12
破裂区下盘TCU-0760.0001.41?4.07
破裂区下盘TCU-1090.16510.66?10.68
破裂后方CHY-0870.0001.52?2.63
Tab.7 Calculation results of seismic response of bridge tower
Fig.11 Hysteretic curves of maximum equivalent plastic strain position at tower bottom
地震名称断层类型台站号G/km(PGV/PGA)/s
Imperial Valley走滑断层EL-108.600.298
Northridge逆冲断层LV-337.330.077
Tab.8 Fault information of stations and PGV/PGA values of ground motion[27]
台站号dx/mμmPEEQ
拉应变压应变
EL-100.1094.85?1.110.016
LV-30.0000.65?1.620.002
Tab.9 Calculation results of seismic response of bridge tower with different fault types
Fig.12 Calculation results of equivalent plastic strain at tower bottom and output points
Fig.13 Submodel for ultra-low cycle fatigue verification
参数数值参数数值参数数值
σ0/MPa428.5Ckin,1/MPa12752.3ξ2160
Q/MPa17.4ξ1160Ckin,3/MPa630.5
biso0.4Ckin,2/MPa1111.2ξ326
Tab.10 Chaboche combined hardening model parameters of weld material
Fig.14 Void growth index evolution process at tower bottom under seismic effects
Fig.15 Fiber division of sections
模态f/HzMeff-X/%Meff-Z /%
板壳模型纤维模型板壳模型纤维模型板壳模型纤维模型
10.4450.437111111
40.8500.847212121
71.2541.248013131
81.5671.558807910
Tab.11 Comparison of natural vibration characteristics
台站位置台站号Dx/mdx/mμmPEEQ
拉应变压应变
破裂前方TCU-036-EW0.412(3.51%)0.069(10.39%)4.25(4.06%)?3.72(4.62%)0.087(8.42%)
破裂区上盘TCU-052-EW0.626(7.26%)0.062(24.39%)8.42(28.64%)?6.25(8.36%)0.061(15.28%)
破裂区上盘TCU-084-EW0.275(0.73%)0.000(0.00%)4.33(5.46%)?3.88(5.83%)0.098(10.09%)
破裂区下盘TCU-076-EW0.269(2.28%)0.000(0.00%)1.37(2.84%)?3.85(5.41%)0.031(6.45%)
破裂区下盘TCU-109-EW0.603(8.77%)0.118(28.48%)7.36(30.96%)?9.33(12.64%)0.183(21.46%)
破裂后方CHY-087-EW0.163(1.81%)0.000(0.00%)1.47(3.29%)?2.57(2.28%)0.024(5.30%)
Tab.12 Calculation results comparison of seismic responses of bridge tower with fiber and shell elements models
Fig.16 Hysteretic curves of maximum equivalent plastic strain position at tower bottom for different models
[1]   日本土木学会. 阪神淡路大震災における鋼構造物の震災の実態と分析[M]. 東京: 丸善, 1999.
[2]   宇佐美勉. 鋼橋の耐震·制震設計ガイドライン[M]. 東京: 丸善, 2006.
[3]   ZHUGE H, XIE X Hysteresis model for fiber elements in effective damaged zone of square-section steel piers considering local instability effect of steel plates[J]. Journal of Structural Engineering, 2020, 146 (8): 04020156
doi: 10.1061/(ASCE)ST.1943-541X.0002698
[4]   CHEN S, XIE X, ZHUGE H Hysteretic model for steel piers considering the local buckling of steel plates[J]. Engineering Structures, 2019, (183): 303- 318
[5]   刘乃藩, 高圣彬 带肋圆形截面钢桥墩的延性性能预测[J]. 哈尔滨工业大学学报, 2017, 49 (3): 138- 143
LIU Naifan, GAO Shengbin Ductility prediction of stiffened steel pipe-section bridge piers[J]. Journal of Harbin Institute of Technology, 2017, 49 (3): 138- 143
[6]   KANG L, GE H Predicting ductile crack initiation in steel bridge piers with unstiffened box section under specific cyclic loadings using detailed and simplified evaluation methods[J]. Advances in Structural Engineering, 2015, 18 (9): 1427- 1442
doi: 10.1260/1369-4332.18.9.1427
[7]   USAMI T, GAO S, GE H Stiffened steel box columns. Part 2: ductility evaluation[J]. Earthquake Engineering and Structural Dynamics, 2000, 29 (11): 1707- 1722
doi: 10.1002/1096-9845(200011)29:11<1707::AID-EQE990>3.0.CO;2-7
[8]   JENOTHAN M, JAYASINGHE J, BANDARA C Lateral behaviour and performance evaluation of steel piers under cyclic lateral loading[J]. Journal of Constructional Steel Research, 2023, 201: 107764
doi: 10.1016/j.jcsr.2022.107764
[9]   谢旭, 唐站站. 钢桥抗震设计[M]. 北京: 科学出版社, 2019.
[10]   RAHEEM S E A, HAYASHIKAWA T, DORKA U Ground motion spatial variation effects on seismic response control of cable-stayed bridges[J]. Earthquake Engineering and Engineering Vibration, 2011, 10: 37- 39
[11]   和崎宏一, 柳野和也, 廣住敦士, など 長大斜張橋の想定大規模地震時の非線形挙動に関する研究[J]. 構造工学論文集, 2007, 53A: 388- 397
WASAKI Kouichi, YANAGINO Kazuya, HIROZUMI Atsushi, et al Nonlinear seismic behaviors of a long-span cable-stayed bridge in major earthquakes[J]. Journal of Structural Engineering, 2007, 53A: 388- 397
[12]   OKAMOTO Y, NAKAMURA S Static and seismic studies on steel/concrete hybrid towers for multi-span cable-stayed bridges[J]. Journal of Constructional Steel Research, 2011, 67 (2): 203- 210
doi: 10.1016/j.jcsr.2010.08.008
[13]   谢旭, 唐站站, 胡欣科, 等 纤维模型在钢拱桥抗震设计中的适用性研究[J]. 中国公路学报, 2015, 28 (2): 33- 42
XIE Xu, TANG Zhanzhan, HU Xinke, et al Study on applicability of fiber model in seismic design for steel arch bridge[J]. China Journal of Highway and Transport, 2015, 28 (2): 33- 42
doi: 10.3969/j.issn.1001-7372.2015.02.005
[14]   张鸿. 千米级斜拉桥施工关键技术研究与实践[M]. 北京: 人民交通出版社, 2015.
[15]   朱家豪, 叶爱君, 韩大章, 等 钢塔斜拉桥地震反应特性分析[J]. 建筑钢结构进展, 2020, 22 (2): 36- 40
ZHU Jiahao, YE Aijun, HAN Dazhang, et al Seismic response analysis of steel-tower cable-stayed bridges[J]. Progress in Steel Building Structures, 2020, 22 (2): 36- 40
[16]   李帅, 王景全, 颜晓伟, 等 近断层地震动空间分布特征对斜拉桥地震响应影响[J]. 土木工程学报, 2016, 49 (6): 94- 104
LI Shuai, WANG Jingquan, YAN Xiaowei, et al Influence of spatial distribution characteristics of near-fault ground motion on seismic response of cable-stayed bridges[J]. China Civil Engineering Journal, 2016, 49 (6): 94- 104
[17]   LI S, ZHANG F, WANG J Q, et al Seismic responses of super-span cable-stayed bridges induced by ground motions in different sites relative to fault rupture considering soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2017, 101: 295- 310
doi: 10.1016/j.soildyn.2017.07.016
[18]   陈扬, 张铭, 王秋良, 等 近断层脉冲型地震动作用下大跨斜拉桥的地震响应特征分析[J]. 公路, 2022, 67 (1): 97- 104
CHEN Yang, ZHANG Ming, WANG Qiuliang, et al Analysis seismic response characteristics of cable stayed bridges under near-fault pulse ground motion[J]. Highway, 2022, 67 (1): 97- 104
[19]   辰巳正明. 鋼斜張橋-技術とその変遷[M]. 東京: 丸善, 2010: 231.
[20]   Japanese Road Association. Specifications for highway bridges part V: seismic design [S]. Tokyo: Maruzen, 2012.
[21]   王彤. 桥梁结构钢材滞回本构模型改进及其应用研究[D]. 杭州: 浙江大学, 2016.
WANG Tong. Improvement of the hysteretic constitutive model for bridge structural steels and its application [D]. Hangzhou: Zhejiang University, 2016.
[22]   CHABOCHE J L Time-independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986, 2 (2): 149- 188
doi: 10.1016/0749-6419(86)90010-0
[23]   CHEN W F, DUAN L. Bridge engineering handbook: seismic design [M]. Boca Raton: CRC Press, 2014.
[24]   黄蓓. 基于集集地震记录的近断层地震动特性分析[D]. 北京: 中国地震局地球物理研究所, 2003.
HUANG Bei. Study on near-field characteristics of strong ground motion during the Chi-Chi, Taiwan, earthquake [D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2003.
[25]   罗全波, 陈学良, 高孟潭, 等 集集地震近断层速度脉冲分析[J]. 国际地震动态, 2019, (10): 2- 11
LUO Quanbo, CHEN Xueliang, GAO Mengtan, et al Analysis of near-fault velocity pulses in the Chi-Chi earthquake[J]. International Seismological Dynamics, 2019, (10): 2- 11
[26]   SHIN T C An overview of the 1999 ChiChi, Taiwan, earthquake[J]. Bulletin of the Seismological Society of America, 2001, 91 (5): 895- 913
[27]   李帅. 近断层地震动工程特性及其作用下大跨斜拉桥地震响应分析[D]. 南京: 东南大学, 2018.
LI Shuai. Characteristics of near fault ground motions and its influence on the seismic performance of long-span cable-stayed bridge [D]. Nanjing: Southeast University, 2018.
[28]   KANVINDE A, DEIERLEIN G Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, 2007, 133 (6): 701
doi: 10.1061/(ASCE)0733-9399(2007)133:6(701)
[29]   诸葛翰卿, 谢旭, 廖燕华, 等 横桥向地震作用对钢拱桥地震损伤发展的影响[J]. 浙江大学学报: 工学版, 2019, 53 (4): 702- 712
ZHUGE Hanqing, XIE Xu, LIAO Yanhua, et al Effect of transverse earthquake action on development of seismic damage of steel arch bridges[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 702- 712
[30]   廖燕华. 钢桥焊接节点超低周疲劳性能与断裂机理研究[D]. 杭州: 浙江大学, 2018.
LIAO Yanhua. Research on ultra low cycle fatigue performance and fracture mechanism of steel bridge welded joint [D]. Hangzhou: Zhejiang University, 2018.
[1] LING Dao-sheng, GUO Heng, CAI Wu-jun, HAN Chao. Research on seismic damage of metro station
with centrifuge shaking table model test
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2201-2209.