Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (9): 1935-1944    DOI: 10.3785/j.issn.1008-973X.2024.09.018
    
Queue length estimation model for mixed traffic flow of intelligent connected vehicles and human-driven vehicles
Ningbo CAO1(),Jiahui CHEN2,Liying ZHAO3,*()
1. College of Transportation Engineering, Chang’an University, Xi’an 710061, China
2. School of Automation, Northwestern Polytechnical University, Xi’an 710129, China
3. School of Economics and Management, Xi’an University of Technology, Xi’an 710048, China
Download: HTML     PDF(1328KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A dynamic queue length estimation model based on probability statistics and Bayesian theorem was proposed, to solve the problem of queue length estimation at intersections with mixed traffic of intelligent connected vehicles (ICVs) and human-driven vehicles (HDVs). Firstly, taking into account factors such as the position, speed, and penetration rate of ICVs in the queue, models for estimating the queue lengths of observable and unobservable queues, as well as the penetration rate, were constructed. Real-time estimation of queue lengths and penetration rate was achieved through iteration. Then, the distribution characteristics of ICVs in the queue under different penetration rate conditions were simulated using random seeds. The estimation accuracy of the model under different traffic conditions was analyzed. Comparison analysis with existing models showed that, under low penetration rate conditions of ICVs (10%) during off-peak hours, the average absolute percentage error (MAPE) of the proposed model was 29.35%, while the existing model had an MAPE of 59.68%; during peak hours, the MAPE of this model was 26.50%, compared to 34.66% for the existing model. Under high penetration rate conditions of ICVs (90%) during off-peak hours, the MAPE of this model was 6.90%, while the existing model had an MAPE of 17.85%; during peak hours, the MAPE of this model was 1.45%, compared to 1.05% for the existing model, with similar errors. The proposed queue estimation model for mixed traffic of ICVs and human-driven vehicles has better estimation accuracy under both low and high penetration rate conditions.



Key wordsmixed traffic flow      intelligent connected vehicle      Bayesian theorem      trajectory data      queue length estimation     
Received: 29 July 2023      Published: 30 August 2024
CLC:  U 491  
Fund:  陕西省自然科学基础研究计划(青年项目)资助项目(2023-JC-QN-0531);陕西省自然科学基础研究计划(面上项目)资助项目(2024JC-YBMS-376);陕西省社会科学基金资助项目(2022R028,2021R025);陕西省自然科学基金资助项目(2022JM-426).
Corresponding Authors: Liying ZHAO     E-mail: caonb@chd.edu.cn;lyzhao@xaut.edu.cn
Cite this article:

Ningbo CAO,Jiahui CHEN,Liying ZHAO. Queue length estimation model for mixed traffic flow of intelligent connected vehicles and human-driven vehicles. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1935-1944.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.09.018     OR     https://www.zjujournals.com/eng/Y2024/V58/I9/1935


智能网联车和人驾车辆混合交通流排队长度估计模型

为了解决智能网联车(ICVs)和人驾车辆(HDVs)混行交叉口的排队估计问题,提出基于概率统计和贝叶斯定理的排队长度估计模型. 综合考虑队列中智能网联车位置、速度和渗透率等因素,分别构建可观测队列排队长度估计模型、不可观测队列排队长度估计模型和渗透率估计模型,通过迭代实现排队长度和渗透率的实时估计. 利用随机种子模拟不同渗透率条件下智能网联车在队列中的分布特征,分析不同交通条件下模型的估计精度. 与已有模型的对比表明,在智能网联车低渗透率(10%)条件下,在非高峰时段,本研究模型、已有模型的平均绝对百分比误差(MAPE)分别为29.35%、59.68%;在高峰时段,本研究模型、已有模型的MAPE分别为26.50%、34.66%. 在智能网联车高渗透率条件下(90%),在非高峰时段,本研究模型、已有模型的MAPE分别为6.90%、17.85%;在高峰时段,本研究模型、已有模型的MAPE分别为1.45%、1.05%,误差接近. 本研究所提出的排队估计模型在低渗透率和高渗透率条件下均具有更好的估计精度.


关键词: 混合交通流,  智能网联车,  贝叶斯定理,  轨迹数据,  排队长度估计 
Fig.1 Observation diagram of vehicle queuing process
Fig.2 Construction and validation flowchart of queue length estimation model
Fig.3 Schematic diagram of simplified queuing status
条件${P_{\text{e}}} $
G=0G=1G=2G=3G=4G=5
$\lambda = 3,p = 10 $%0.160.230.170.120.090.06
$\lambda = 3,p = 20 $%0.310.340.170.090.050.02
$\lambda = 3,p = 30 $%0.440.370.130.040.010.01
$\lambda = 3,p = 40 $%0.560.350.070.020.000.00
$\lambda = 3,p = 50 $%0.660.300.040.000.000.00
$\lambda = 4,p = 10 $%0.200.280.180.120.080.05
$\lambda = 4,p = 20 $%0.370.370.150.060.030.01
$\lambda = 4,p = 30 $%0.510.370.090.020.010.00
$\lambda = 4,p = 40 $%0.630.320.040.010.000.00
$\lambda = 4,p = 50 $%0.730.250.020.000.000.00
Tab.1 Probability of queue errors
Fig.4 Schematic diagram of intersection data selection
Fig.5 Queue length estimation process
开始时间$C$/s${N^{\text{C}}}$${T_{\text{g}}}$/s${\text{Lane1}}$${\text{Lane2}}$${\text{Lane3}}$
14:3016746465.765.715.70
18:2016743469.4910.1910.47
Tab.2 Queue length survey data
${N^{{\text{All}}}}$${N^{{\text{ICV}}}}$${N^{{\text{HDV}}}}$$p$/%$\widehat p$/%
77715662120.0719.03
Tab.3 Results of penetration rate estimation
Fig.6 MAPE during off-peak and peak hours based on proposed model
时段seed${Q_{{\text{a}}}} $$\bar {{Q_{{\text{a}}}}} $${Q_{{\text{p}}}} $$ \bar{{ Q_{{\text{p}}}}} $MAEA-MAEMAPE
/%
A-MAPE
/%
14:30—
16:30
(非高峰)
85.635.634.534.461.101.1719.6120.86
105.634.311.3223.38
125.634.531.1019.58
18:20—
20:20
(高峰)
810.0310.038.848.591.1911.8314.33
1010.038.581.451.4414.46
1210.038.361.6716.68
Tab.4 Estimated queue lengths based on proposed model
Fig.7 MAPE during off-peak and peak hours based on proposed model ($p = 20\text{%} $)
$p $/%${Q_{\text{a}}} $${Q_{\text{p}}} $MAEMAPE/%$\widehat p $/%
105.633.981.6529.359.90
205.634.081.5427.4718.28
305.634.211.4125.0929.60
505.634.920.7012.4854.24
805.635.070.559.8978.63
905.635.240.386.9092.02
Tab.5 Estimated queue lengths during off-peak hours based on proposed model under different penetration rates
$p $/%${Q_{\text{a}}} $${Q_{\text{p}}} $MAEMAPE/%$\widehat p $/%
1010.037.372.6626.5010.12
2010.037.862.1721.6521.36
3010.038.141.8918.8528.64
5010.039.310.727.1650.95
8010.039.730.303.0379.59
9010.039.880.151.4590.51
Tab.6 Estimated queue lengths during peak hours based on proposed model under different penetration rates
Fig.8 MAPE during off-peak and peak hours based on Bayesian theorem ($p = 20\text{%} $)
$p $/%${Q_{\text{a}}} $${Q_{\text{p}}} $MAEMAPE/%$\widehat p $/%
105.638.993.3659.689.90
205.637.712.0836.9118.28
305.634.061.6729.7229.60
505.636.871.2422.0654.24
805.636.681.0518.6578.63
905.636.631.0017.8592.02
Tab.7 Estimated queue lengths during off-peak hours based on Bayesian theorem under different penetration rates
$p $/%${Q_{\text{a}}} $${Q_{\text{p}}} $MAEMAPE/%$\widehat p $/%
1010.036.553.4834.6610.12
2010.037.112.9229.1121.36
3010.0312.452.4224.0828.64
5010.039.390.646.4250.95
8010.039.800.232.3379.59
9010.039.920.111.0590.51
Tab.8 Estimated queue lengths during peak hours based on Bayesian theorem under different penetration rates
Fig.9 MAPE of proposed model and Bayesian theorem model with different variables
[1]   谈超鹏, 姚佳蓉, 曹喻旻, 等 基于网联车辆轨迹数据的周期排队长度估计[J]. 中国公路学报, 2021, 34 (7): 140- 151
TAN Chaopeng, YAO Jiarong, CAO Yumin, et al Cycle-based queue length estimation based on connected vehicle trajectory data[J]. China Journal of Highway and Transport, 2021, 34 (7): 140- 151
doi: 10.3969/j.issn.1001-7372.2021.07.012
[2]   TAN C , YAO J , TANG K , et al. Cycle-based queue length estimation for signalized intersections using sparse vehicle trajectory data [J]. IEEE Transactions on Intelligent Transportation Systems , 2021(1): 22.
[3]   王志建, 金晨辉, 龙顺忠, 等 基于轨迹数据的信号交叉口排队长度估计[J]. 科学技术与工程, 2022, 22 (21): 9407- 9413
WANG Zhijian, JIN Chenhui, LONG Shunzhong, et al Queue length of signal intersection based on trajectory data[J]. Science Technology and Engineering, 2022, 22 (21): 9407- 9413
doi: 10.3969/j.issn.1671-1815.2022.21.050
[4]   RAMEZANI M, GEROLIMINIS N Queue profile estimation in congested urban networks with probe data[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30 (6): 414- 432
doi: 10.1111/mice.12095
[5]   王钰, 徐建闽, 林培群 基于GPS数据的信号交叉口实时排队长度估算[J]. 交通运输系统工程与信息, 2016, 16 (6): 67- 73
WANG Yu, XU Jianmin, LIN Peiqun Real-time queue length estimation for signalized intersections using GPS data[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16 (6): 67- 73
doi: 10.3969/j.issn.1009-6744.2016.06.011
[6]   MOHAJERPOOR R, SABERI M, RAMEZANI M. Delay variability optimization using shockwave theory at an undersaturated intersection [C]// IFAC-PapersOnLine . Amsterdam: Elsevier Science Bv, 2017: 5289–5294.
[7]   李爱杰, 唐克双, 董可然 基于单截面低频检测数据的信号交叉口排队长度估计[J]. 交通信息与安全, 2018, 36 (1): 57- 64
LI Aijie, TANG Keshuang, DONG Keran Estimation of queuing length at signalized intersections using low-frequency point detector data[J]. Journal of Transport Information and Safety, 2018, 36 (1): 57- 64
doi: 10.3963/j.issn.1674-4861.2018.01.008
[8]   YAO J, LI F, TANG K, et al Sampled trajectory data-driven method of cycle-based volume estimation for signalized intersections by hybridizing shockwave theory and probability distribution[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (6): 2615- 2627
[9]   唐进, 于文雅 车辆轨迹数据驱动的道路交叉口排队长度探测[J]. 湖南交通科技, 2022, 48 (3): 208- 214
TANG Jin, YU Wenya Queue length detection of road intersection based on vehicle trajectory[J]. Hunan Communication Science and Technology, 2022, 48 (3): 208- 214
doi: 10.3969/j.issn.1008-844X.2022.03.042
[10]   刘旭星, 邓明君, 彭理群 基于轨迹数据的过饱和信号路口排队长度分析[J]. 华东交通大学学报, 2023, 40 (3): 66- 76
LIU Xuxing, DENG Mingjun, PENG Liqun Analysis of queue length at oversaturated signal intersections based on trajectory data[J]. Journal of East China Jiaotong University, 2023, 40 (3): 66- 76
[11]   LI J Q, ZHOU K, SHLADOVER S E, et al Estimating queue length under connected vehicle technology: using probe vehicle, loop detector, and fused data[J]. Transportation Research Record, 2013, 2356 (1): 17- 22
doi: 10.1177/0361198113235600103
[12]   COMERT G Effect of stop line detection in queue length estimation at traffic signals from probe vehicles data[J]. European Journal of Operational Research, 2013, 226 (1): 67- 76
doi: 10.1016/j.ejor.2012.10.035
[13]   COMERT G Queue length estimation from probe vehicles at isolated intersections: estimators for primary parameters[J]. European Journal of Operational Research, 2016, 252 (2): 502- 521
doi: 10.1016/j.ejor.2016.01.040
[14]   ZHAO Y, ZHENG J, WONG W, et al Estimation of queue lengths, probe vehicle penetration rates, and traffic volumes at signalized intersections using probe vehicle trajectories[J]. Transportation Research Record, 2019, 2673 (11): 660- 670
doi: 10.1177/0361198119856340
[15]   MEI Y, GU W, CHUNG E, et al A Bayesian approach for estimating vehicle queue lengths at signalized intersections using probe vehicle data[J]. Transportation Research Part C: Emerging Technologies, 2019, 109: 233- 249
doi: 10.1016/j.trc.2019.10.006
[16]   WONG W, SHEN S, ZHAO Y, et al On the estimation of connected vehicle penetration rate based on single-source connected vehicle data[J]. Transportation Research Part B: Methodological, 2019, 126: 169- 191
doi: 10.1016/j.trb.2019.06.003
[17]   TAN C, LIU L, WU H, et al Fuzing license plate recognition data and vehicle trajectory data for lane-based queue length estimation at signalized intersections[J]. Journal of Intelligent Transportation Systems, 2020, 24 (5): 449- 466
doi: 10.1080/15472450.2020.1732217
[18]   TALUKDER M A S, LIDBE A D, TEDLA E G, et al. Trajectory-based signal control in mixed connected vehicle environments [J]. Journal of Transportation Engineering Part A-Systems , 2021, 147(5): 04021016.
[19]   ZHAO Y, WONG W, ZHENG J, et al Maximum likelihood estimation of probe vehicle penetration rates and queue length distributions from probe vehicle data[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (7): 7628- 7636
[20]   ZHAO Y, ZHENG J, WONG W, et al Various methods for queue length and traffic volume estimation using probe vehicle trajectories[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 70- 91
doi: 10.1016/j.trc.2019.07.008
[21]   张伟斌, 叶竞宇, 白孜帅, 等 基于联网车辆轨迹数据的交叉口排队长度估计方法[J]. 中国公路学报, 2022, 35 (3): 216- 225
ZHANG Weibin, YE Jingyu, BAI Zishuai, et al Queue length estimation and accuracy assessment method for intersections based on trajectory data[J]. China Journal of Highway and Transport, 2022, 35 (3): 216- 225
doi: 10.3969/j.issn.1001-7372.2022.03.019
[22]   张斯钰. 基于网联车数据的城市网络排队估计和最大压强信号控制[D]. 杭州: 浙江大学.
ZHANG Siyu. Joint queue estimation and max pressure control for signalized urban networks with connected vehicles [D]. Hangzhou: Zhejiang University.
[1] Mingfang ZHANG,Jian MA,Nale ZHAO,Li WANG,Ying LIU. Intelligent connected vehicle motion planning at unsignalized intersections based on deep reinforcement learning[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1923-1934.
[2] Qin WANG,Qingchang LU,Jianyu LI,Zhangxin WANG,Tu ZHANG. Profitable taxi route recommendation considering demand[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1233-1242.
[3] Guo-min QIAN,Jun-sheng FAN,Chun-guang HE,Li-hui ZHANG,Dian-hai WANG. Optimization of spatial-temporal resources at intersections under environment of mixed traffic flow with connected and autonomous vehicles and human-driven vehicles[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1019-1026.