Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (3): 598-605    DOI: 10.3785/j.issn.1008-973X.2023.03.018
    
Stability of axial compression bars with inter-bar torsional constraints
Ting-guo CHEN(),Zhao-di GUO
School of Civil Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
Download: HTML     PDF(2067KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Theoretical derivation was conducted for the stability of axial compression bars with inter-bar torsional constraints. A theoretical model was established by simplifying engineering examples, the stability bearing capacity of compression bars with fixed ends was solved, and the relationship formula between buckling load and torsional spring stiffness of inter-bar was put forward. According to the theoretical model, the torsional spring was replaced by a beam, and then the buckling test was carried out using the beam as the support of the compression bar. The torsional stiffness of the beam was altered through changing its cross section. Six groups of compression bars having different torsional stiffness were tested to verify the correctness of the theoretical solution. A finite element model was also established, and its reliability was verified by the test results. Based on the verified finite element model, the analysis of twelve cases was carried out, and compared with the theoretical curve. The correctness of the theoretical solution was demonstrated by experiments and finite element analysis, and a promising calculation formula was put forward for engineering design.



Key wordscompression bar      torsional constraint      stability      finite element analysis     
Received: 17 March 2022      Published: 31 March 2023
CLC:  TU 391  
Cite this article:

Ting-guo CHEN,Zhao-di GUO. Stability of axial compression bars with inter-bar torsional constraints. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 598-605.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.03.018     OR     https://www.zjujournals.com/eng/Y2023/V57/I3/598


具有杆间扭转约束的轴心压杆稳定性研究

针对具有杆间扭转约束的轴心压杆稳定性问题,进行理论推导. 简化工程模型为理论模型,求解两端固定压杆的稳定承载力,提出稳定承载力与杆间扭转弹簧刚度的关系公式. 以理论模型为基础,用横梁代替扭转弹簧,使用杆间横梁支撑压杆进行失稳试验,调整横梁截面以改变横梁抗扭刚度. 进行6组不同抗扭刚度下的杆件稳定承载力试验,试验结果验证了理论解的正确性. 建立有限元模型,依据试验结果对模型可靠性进行验证,基于经过验证的有限元模型进行12种工况下的算例分析,并与理论曲线比较. 试验和有限元结果验证了理论解的正确性,提出了可供工程设计使用的计算公式.


关键词: 压杆,  扭转约束,  稳定性,  有限元分析 
Fig.1 Local force model of simplified steel tower structure
Fig.2 Theoretical model of compression bar
Fig.3 Partial member below torsional spring constraint
Fig.4 Partial member containing torsional spring constraint
Fig.5 Relation curve between stable bearing capacity of compression bar and torsional spring stiffness
Fig.6 Compression bars used in experiment
Fig.7 Cross beam support between bars
Fig.8 Two-end fixed compression bar with cross beam support between bar
Fig.9 Theoretical model corresponding to test model of two-end fixed compression bar with cross beam support between bar
Fig.10 Tensile experiment of compression bar
试验编号 E/GPa $ \nu $ G/GPa
1 202 0.306 77
2 204 0.298 79
3 206 0.301 79
平均值 204 0.302 78
Tab.1 Tensile experimental result of compression bar
Fig.11 Instability pattern of model MX-1
Fig.12 Torsion of beam of MX-1
Fig.13 Load-displacement curve of MX-1
模型编号 横梁截面尺寸/mm GJ/(N·m) Pe/kN
n=1 n=2 n=3 平均值
MX-1 Φ10×1 274 18.47 18.52 18.59 18.53
MX-2 Φ22×1 3 446 23.56 23.25 22.82 23.21
MX-3 Φ22×2 6 000 24.99 25.76 25.78 25.51
MX-4 Φ26×2 10 336 26.97 27.63 28.27 27.62
MX-5 Φ26×4 16 336 29.07 29.35 29.35 29.26
MX-6 Φ26×8 20 744 30.51 29.99 31.10 30.53
Tab.2 Stability bearing capacities of compression bar specimens with different experimental models
模型编号 $ \gamma $ $ \eta $ Pe/kN Pt/kN e/%
MX-1 0.07 2.90 18.53 20.61 +11.2
MX-2 0.88 3.22 23.21 25.42 +9.5
MX-3 1.53 3.37 25.51 27.84 +9.1
MX-4 2.64 3.54 27.62 30.72 +11.2
MX-5 4.17 3.67 29.26 33.01 +12.8
MX-6 5.29 3.73 30.53 34.10 +11.7
Tab.3 Comparison between experimental values and theoretical values of stability bearing capacities with different experimental models
Fig.14 Ultimate load capacities of six experimental models
Fig.15 Compression bars with cross beam support between bars
试验编号 Pe/kN Pt/kN Pf /kN ef /% et /%
MX-1 18.53 20.61 20.82 +12.4 +11.2
MX-2 23.21 25.42 25.95 +11.8 +9.5
MX-3 25.51 27.84 28.62 +12.2 +9.1
MX-4 27.62 30.72 31.50 +14.0 +11.2
MX-5 29.26 33.01 33.74 +15.3 +12.8
MX-6 30.53 34.10 34.75 +13.8 +11.7
Tab.4 Comparison between experimental values, theoretical values and finite element values of compression bar capacities with different experimental models
c/(N·m) $\gamma $ Pt/kN Pf/kN e/%
0.000 1 0 20.29 20.25 ?0.2
1 984 0.5 23.66 23.59 ?0.3
3 968 1 26.19 26.12 ?0.3
7 936 2 29.66 29.56 ?0.3
11 904 3 31.82 31.71 ?0.3
15 872 4 33.26 33.14 ?0.4
23 808 6 35.02 34.89 ?0.4
35 712 9 36.41 36.27 ?0.4
51 584 13 37.35 37.20 ?0.4
79 360 20 38.12 37.97 ?0.4
3 968 000 1 000 39.66 39.48 ?0.5
3 968 000 000 1 000 000 39.68 39.51 ?0.4
Tab.5 Comparison between theoretical solutions and finite element solutions of compression bar capacities under different stiffness of spring
Fig.16 Comparison between theoretical curve and finite element curve of compression bar capacities
[1]   王祖能. 具有杆间弹性支撑的端部固定压杆稳定性研究[D]. 大连: 大连理工大学, 2019.
WANG Zu-neng. Stability of a two fixed-ends bar with middle elastic support [D]. Dalian: Dalian University of Technology, 2019.
[2]   谢鹏. 多边形钢塔架局部模型稳定性研究[D]. 大连: 大连理工大学, 2018.
XIE Peng. Research on the stability of local model of polygonal steel tower [D]. Dalian: Dalian University of Technology, 2018.
[3]   TIMOSHENKO S P, GERE J M. Theory of elastic stability [M]. New York: McGraw-Hill, 1961.
[4]   FOSTER A S J, GARDNER L Ultimate behavior of continuous steel beams with discrete lateral restraints[J]. Thin-Walled Structures, 2015, 88: 58- 69
doi: 10.1016/j.tws.2014.11.018
[5]   王述红, 姚骞, 张超, 等 基于稳定函数的支撑结构系统临界力计算方法[J]. 东北大学学报: 自然科学版, 2021, 42 (10): 1475- 1482
WANG Shu-hong, YAO Qian, ZHANG chao, et al Calculation method of the critical force of support structure system based on stability function[J]. Journal of Northeastern University: Natural Science, 2021, 42 (10): 1475- 1482
[6]   石永久, 余香林, 班慧勇, 等 高性能结构钢材与钢结构体系研究与应用[J]. 建筑结构, 2021, 51 (17): 145- 151
SHI Yong-jiu, YU Xiang-lin, BAN Hui-yong, et al Research and application on high performance structural steel and its structural system[J]. Building Structure, 2021, 51 (17): 145- 151
doi: 10.19701/j.jzjg.2021.17.021
[7]   班慧勇, 赵平宇, 周国浩, 等 复合型高性能钢材轴压构件整体稳定性能研究[J]. 土木工程学报, 2021, 54 (9): 39- 55
BAN Hui-yong, ZHAO Ping-yu, ZHOU Guo-hao, et al Research on overall buckling behavior of superior high-performance steel columns[J]. China Civil Engineering Journal, 2021, 54 (9): 39- 55
doi: 10.15951/j.tmgcxb.2021.09.011
[8]   BLEICH F. Buckling strength of metal structures [M]. New York: McGraw-Hill, 1952.
[9]   PENG J L Experiment and stability analysis on heavy-duty scaffold systems with top shores[J]. Advanced Steel Construction, 2017, 13: 293- 317
[10]   刘占科, 靳璐君, 周绪红, 等 钢构件整体稳定直接分析法研究现状及展望[J]. 建筑结构学报, 2021, 42 (8): 1- 12
LIU Zhan-ke, JIN Lu-jun, ZHOU Xu-hong, et al State-of-the-art on research of direct analysis method of steel members with global instability[J]. Journal of Building Structures, 2021, 42 (8): 1- 12
doi: 10.14006/j.jzjgxb.2020.C335
[11]   于春海, 陈芳芳, 谢强, 等 Q420高强度角钢轴心受压承载力试验研究[J]. 建筑结构, 2020, 50 (3): 100- 104
YU Chun-hai, CHEN Fang-fang, XIE Qiang, et al Experimental study on bearing capacity of Q420 high-strength angle steel under axial compression[J]. Building Structure, 2020, 50 (3): 100- 104
doi: 10.19701/j.jzjg.2020.03.018
[12]   聂诗东, 戴国欣, 沈乐, 等 Q345GJ钢(中)厚板H形及箱形柱残余应力与轴压稳定承载力分析[J]. 工程力学, 2017, 34 (12): 171- 182
NIE Shi-dong, DAI Guo-xin, SHEN Le, et al Residual stress distribution and overall stability load-carrying capacities of H-shaped and box section columns welded by Q345GJ structural steel plates under axial compression[J]. Engineering Mechanics, 2017, 34 (12): 171- 182
[13]   宁克洋, 杨璐, 赵梦晗 不锈钢压弯构件整体稳定性能有限元研究与承载力计算方法[J]. 工程力学, 2019, 36 (12): 113- 120
NING Ke-yang, YANG Lu, ZHAO Meng-han Fe research on the overall stability of stainless-steel beam-columns and calculation method of bearing capacity[J]. Engineering Mechanics, 2019, 36 (12): 113- 120
doi: 10.6052/j.issn.1000-4750.2018.12.0705
[14]   PENG J L, WANG C S, WANG S H, et al Study on stability and design guidelines for the combined system of scaffolds and shores[J]. Steel and Composite Structures, 2020, 35 (3): 385- 404
[15]   DOU C, PI Y L Effects of geometric imperfections on flexural buckling resistance of laterally braced columns[J]. Journal of Structural Engineers, 2016, 142 (9): 04016048
doi: 10.1061/(ASCE)ST.1943-541X.0001508
[16]   WINTER G Lateral bracing of columns and beams[J]. Journal of the Structural Division, 1958, 84 (2): 807- 825
[17]   班慧勇, 施刚, 石永久 Q420高强度等边角钢轴压构件整体稳定性能设计方法研究[J]. 工程力学, 2014, 31 (3): 63- 71
BAN Hui-yong, SHI Gang, SHI Yong-jiu Investigation on design method of overall bucking behavior for Q420 high strength steel equal-leg angle members under axial compression[J]. Engineering Mechanics, 2014, 31 (3): 63- 71
[18]   童根树, 邢国然 剪切型支撑框架弹塑性失稳模式判定准则[J]. 浙江大学学报: 工学版, 2007, 41 (7): 1136- 1142
TONG Gen-shu, XING Guo-ran Determination of buckling mode for elastic-plastic braced frames[J]. Journal of Zhejiang University: Engineering Science, 2007, 41 (7): 1136- 1142
[19]   中国钢铁工业协会. 结构用无缝钢管: GB/T 8162—2018 [S]. 北京: [s. n.], 2018.
[1] Qi-bin ZHUANG,Huan-bin ZHANG,Zhi-rong LIU,Rui ZHU. Water flow field evolution characteristics of oblique water-exit process for different shapes underwater launched vehicles[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 200-208.
[2] Cai-xia LIU,Ting-ting PAN,Yi-fan SUN,Shuai LI,Ping LIU,Ying HUANG. Segmented pneumatic soft actuator for rehabilitation training[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1127-1134.
[3] Ao ZHOU,Bin WANG,Jie-tao LI,Xin ZHOU,Wen-jun XIA. Long-term stability analysis and deformation prediction of soft soil foundation pit in Taihu Tunnel[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 692-701.
[4] Chao ZHANG,Zheng-dong HUANG,Zhong-ming XIONG,Xiao-lu YUAN,You-jun XU,Jia-wang KANG. Seismic response of reinforced concrete frame structure in ground fissures area[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2028-2036.
[5] En-yu WU,Guo-dong QIAN,Bin LI. Water adsorption in aluminum-based metal-organic framework for atmospheric water harvesting[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 186-192.
[6] Jie WANG,Zhao LI,Zi-ran LI. Research on tread wear behavior of all steel radial truck tire[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1615-1624.
[7] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[8] Xing-yu ZENG,Jun-yang LI,Jia-xu WANG,Ting TANG,Cong LI. Design and modification of harmonic double circular arc tooth profile based on finite element method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1548-1557.
[9] Jia-jia WANG,Ying-feng CAI,Long CHEN,Shao-hua WANG,De-hua SHI. Coordinated control of hybrid electric vehicle based on extended state observer estimation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1225-1233.
[10] Jia-yi SHEN,Meng KU,Li-zhong WANG. Stability analyses of submarine slopes based on shear band propagation method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1299-1307.
[11] Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.
[12] Xi LI,Jian HU,Jian-yong YAO,Ke-peng WEI,Peng-fei WANG,Hao-chen XING. High precision control of electromechanical system based on observer friction compensation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1150-1158.
[13] Cheng-fei TAO,Hao ZHOU,Liu-bin HU,Zi-hua LIU,Ke-fa CEN. Dynamic characteristics of thermoacoustic instability of liquid spray combustion[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2108-2114.
[14] Yu-qiong WANG,Song GAO,Yu-hai WANG,Yi XU,Dong GUO,Ying-chao ZHOU. Trajectory tracking and stability control of high-speed autonomous vehicle[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1922-1929.
[15] Jun-xia JIANG,Hai-peng LIAO. Stiffness modeling and structure optimization of heavy-duty intelligent stacking equipment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1948-1959.