Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (10): 2028-2036    DOI: 10.3785/j.issn.1008-973X.2022.10.014
    
Seismic response of reinforced concrete frame structure in ground fissures area
Chao ZHANG1,2(),Zheng-dong HUANG1,2,Zhong-ming XIONG3,*(),Xiao-lu YUAN4,You-jun XU1,2,Jia-wang KANG1,2
1. School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
2. The Academician Expert Workstation for Mine Safety and Underground Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
3. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
4. School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
Download: HTML     PDF(2076KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The three-dimensional numerical model of soil and structure system of the ground fissures site was established by the finite element program ABAQUS in order to analyze the seismic response of the reinforced concrete (RC) frame structure in ground fissures area. The calculation results were compared with the results of the shaking table test for the frame structure crossing ground fissures, and the feasibility of numerical simulation method was verified. Laws and scopes for the effects of the ground fissures on the frame structure under earthquake action were obtained based on the quantitative analysis of the displacement angle, inter-story shear force and total horizontal seismic action of frame structure. Results show that excitation of the non-uniform seismic excitations in the ground fissures site aggravates the damage of the superstructure. The damage of members and joints across the middle span of RC frame structure is more serious. The length and width of cracks of structure on the hanging-wall are more than those on the footwall. The frame structure crossing ground fissures is the most unfavorable layout. The dynamic response of this structure significantly increases, so it should be avoided as far as possible in the structural design. The dynamic response of the frame structure on the hanging-wall is much larger than that on the footwall, showing "hanging-wall/footwall effect". The frame structure is seriously damaged in the range of 0~20 m in the hanging-wall and 0~15 m in the footwall near the ground fissures. The dynamic response of the structure significantly decreases in the hanging-wall 30 m away and in the footwall 20 m away.



Key wordsground fissure      reinforced concrete frame structure      shaking table test      finite element analysis      dynamic response     
Received: 29 October 2021      Published: 25 October 2022
CLC:  TU 375  
Fund:  国家自然科学基金资助项目(51278399);住房与城市建设部自然基金资助项目(2019-k-044);陕西省自然科学基础研究计划重点资助项目(2018JZ5008)
Corresponding Authors: Zhong-ming XIONG     E-mail: z_dynasty@126.com;xiong_zhongming@yahoo.com.cn
Cite this article:

Chao ZHANG,Zheng-dong HUANG,Zhong-ming XIONG,Xiao-lu YUAN,You-jun XU,Jia-wang KANG. Seismic response of reinforced concrete frame structure in ground fissures area. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2028-2036.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.10.014     OR     https://www.zjujournals.com/eng/Y2022/V56/I10/2028


地裂缝环境下钢筋混凝土框架结构的地震响应

为了研究地裂缝场地钢筋混凝土(RC)框架结构的地震响应规律,采用ABAQUS有限元分析软件,建立地裂缝场地土与结构体系的三维数值模型. 将计算结果与跨地裂缝结构模型试验结果进行对比,验证了数值模拟方法的可行性. 通过对框架结构位移角、层间剪力、结构总水平地震作用的定量分析,获得地裂缝对框架结构动力响应的影响规律及影响范围. 研究结果表明,地震作用在地裂缝场地表现出的非一致性加重了上部结构的损伤程度,结构中间跨的构件及节点破坏尤其严重,上盘结构的裂缝长度和宽度更大. 框架结构跨越地裂缝是最不利的布置形式,动力响应尤为剧烈,在结构设计时应尽量避免. 近地裂缝场地上盘结构的响应程度大于下盘,表现出“上、下盘效应”,在上盘0~20 m和下盘0~15 m范围内,框架结构破坏严重,在上盘30 m和下盘20 m外,结构反应显著减小.


关键词: 地裂缝,  钢筋混凝土框架结构,  振动台试验,  有限元分析,  动力响应 
Fig.1 Scheme of prototype structure
Fig.2 Profile of stratum structure of ground fissures site
土层 ww/% Sr/% ρ/(kg·m?3) c/kPa φ/(°) G/MPa E/MPa
黄土 23.5 67 1.71 48 27.6 110.49 39.48
古土壤 22.9 75 1.82 49 27.3 139.45 49.83
粉质黏土 25.2 91 1.94 45 26.6 163.34 58.37
Tab.1 Physical and mechanical properties of soil of ground fissures site
Fig.3 Relative distance between ground fissure and frame structure
Fig.4 Finite element model of soil-frame structure
物理参数 相似系数 物理参数 相似系数
长度SL 0.066 7 时间St 0.182 6
弹性模量SE 0.166 7 频率Sf 5.477 2
等效密度Sρ 1.258 0 位移Su 1
应力Sσ 0.167 7 速度Sv 0.365 2
应变Sε 1 加速度Sa 2
Tab.2 Similarity relation of shaking table test
Fig.5 Shaking table test model
Fig.6 Arrangement of transducers
工况代号 加载顺序 PGA/g
W 1、5、9、11、13、17、21、25、29 0.05
J 2、6、10、14、18、22、26 0.1、0.2、0.3、0.4、
0.6、0.8、1.2
E 3、7、11、15、19、23、27
C 4、8、12、16、20、24、28
Tab.3 Loading cases of shaking table test
Fig.7 Crack propagating of structural model across ground fissure
Fig.8 PGA of each floor of frame structure under earthquake action
Fig.9 Inter story drift of frame structure under Jiangyou wave
Fig.10 Inter-story shear force of frame structure under Jiangyou wave
Fig.11 Increase amplitude of inter-story shear force of frame structure under Jiangyou wave
Fig.12 Total horizontal seismic action of frame structure under Jiangyou wave
[1]   彭建兵. 西安地裂缝灾害[M]. 北京: 科学出版社, 2012: 27-28.
[2]   闫文中. 西安地区地裂缝与地面沉降调查报告[R]. 陕西: 陕西省地质环境监测总站, 2007: 12-13.
YAN Wen-zhong. Investigation report on ground fissures and land subsidence in Xi'an [R]. Shaanxi: Shaanxi Geological Environment Monitoring Station, 2007: 12-13.
[3]   熊仲明, 张朝, 陈轩 地震作用下地裂缝场地地震动参数试验研究[J]. 岩土力学, 2019, 40 (2): 7- 14
XIONG Zhong-ming, ZHANG Chao, CHEN Xuan Model test on ground motion parameters of ground with fissures under seismic loading[J]. Rock and Soil Mechanics, 2019, 40 (2): 7- 14
[4]   XIONG Zhong-ming, ZHANG Chao, HUO Xiao-peng, et al Distributing disciplinarian of ground motion parameters on an earth fissures site during strong earthquakes[J]. Earthquake Engineering and Engineering Vibration, 2020, (3): 597- 610
[5]   慕焕东, 邓亚虹, 常江, 等 西安地裂缝场地动力响应规律振动台模型试验研究[J]. 岩石力学与工程学报, 2020, 39 (Supple.1): 3139- 3149
MU Huan-dong, DENG Ya-hong, CHANG Jiang, et al Shaking table model test study on dynamic response of Xi'an ground fissure site[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39 (Supple.1): 3139- 3149
[6]   LIU Ni-na, HUANG Qiang-bing, MA Yu-jie, et al Experimental study of a segmented metro tunnel in a ground fissure area[J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 410- 416
doi: 10.1016/j.soildyn.2017.06.018
[7]   刘妮娜, 彭建兵, 韩冬冬, 等 穿越活动地裂缝地铁隧道震害机制研究[J]. 岩石力学与工程学报, 2015, 34 (7): 1384- 1391
LIU Ni-na, PENG Jian-bing, HAN Dong-dong, et al Mechanism of seismic damage of metro tunnels through active ground fissures[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (7): 1384- 1391
doi: 10.13722/j.cnki.jrme.2014.1254
[8]   熊仲明, 韦俊, 陈轩, 等 跨越地裂缝框架结构振动台试验及数值模拟研究[J]. 工程力学, 2018, 35 (5): 223- 231
XIONG Zhong-ming, WEI Jun, CHEN Xuan, et al Research on shaking table test and numerical modeling of frame structure crossing ground fissure[J]. Engineering Mechanics, 2018, 35 (5): 223- 231
[9]   熊仲明, 韦俊, 龚宇森, 等 高烈度多维多点地震作用下某跨越地裂缝框剪结构的地震响应分析研究[J]. 西安建筑科技大学学报:自然科学版, 2015, 47 (3): 309- 315
XIONG Zhong-ming, WEI Jun, GONG Yu-sen, et al Seismic response analysis of a frame-shear wall structure across ground fissure in high-intensity and multidimensional multipoint seismic actions[J]. Journal of Xi'an University of Architecture and Technology: Natural Science Edition, 2015, 47 (3): 309- 315
[10]   陈轩, 熊仲明, 张朝, 等 跨地裂缝框架结构地震响应振动台试验研究[J]. 土木工程学报, 2021, 54 (4): 26- 35
CHEN Xuan, XIONG Zhong-ming, ZHANG Chao, et al Shaking table test on seismic response of frame structures across the ground fissure[J]. China Civil Engineering Journal, 2021, 54 (4): 26- 35
[11]   黄华, 钱海增, 吴国超 地裂缝场地结构抗震设防避让距离研究[J]. 地震工程学报, 2020, 42 (2): 536- 545
HUANG Hua, QIAN Hai-zeng, WU Guo-chao Setback distance for seismic fortification and avoidance of structures in ground fissure sites[J]. China Earthquake Engineering Journal, 2020, 42 (2): 536- 545
doi: 10.3969/j.issn.1000-0844.2020.02.536
[12]   西安地裂缝场地勘察与工程设计规程[S]. 西安: 陕西省建设厅, 2006.
[13]   中国建筑科学研究院. 建筑抗震设计规范: GB50011-2010 [S]. 北京: 中国建筑工业出版社, 2010.
[14]   魏彩萍, 王涤, 王冬冬. 唐延路地下人防工程岩土工程地勘报告[R]. 西安: 西北综合勘测设计研究院, 2013: 15-17.
WEI Cai-ping, WANG Di, WANG Dong-dong. The geotechnical investigation report of underground civil air defense engineering of Tangyan Road [R]. Xi’an: Northwest Research Institute of Engineering Investigations and Design, 2013: 15-17.
[15]   刘祖强, 杜振宇, 薛建阳, 等 实腹式型钢混凝土十形与L形截面柱抗震性能试验及有限元分析[J]. 建筑结构学报, 2019, 40 (4): 104- 115
LIU Zu-qiang, DU Zhen-yu, XUE Jian-yang, et al Experimental study and finite element analysis on seismic behavior of solid-web steel reinforced concrete cross-shaped and L-shaped columns[J]. Journal of Building Structures, 2019, 40 (4): 104- 115
[16]   蒋玉敏, 钱德玲, 张泽涵, 等 框架-核心筒结构与地基基础动力相互作用振动台试验研究[J]. 建筑结构学报, 2016, 37 (2): 34- 40
JIANG Yu-min, QIAN De-ling, ZHANG Ze-han, et al Shaking table tests on dynamic interaction of frame-core tube structure and subgrade[J]. Journal of Building Structures, 2016, 37 (2): 34- 40
[17]   陈帜, 熊仲明, 阳帅, 等 跨越地裂缝RC框架结构钢支撑加固方法研究[J]. 振动与冲击, 2021, 40 (23): 279- 287
CHEN Zhi, XIONG Zhong-ming, YANG Shuai, et al Reinforcement method with steel supports for RC frame structure acrossing ground fissures[J]. Journal of Vibration and Shock, 2021, 40 (23): 279- 287
[1] Wen-liang QIU,Hao-rong YANG,Guang-run WU. Parameter study on finite element model of abrupt hanger-breakage event induced dynamic responses of suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1685-1692.
[2] Yi-wen HUANG,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Xue-dong LUO,Ying-kang YAO. Dynamic failure mechanism of concrete pipeline with corroded inner-wall subjected to blasting[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1342-1352.
[3] Cai-xia LIU,Ting-ting PAN,Yi-fan SUN,Shuai LI,Ping LIU,Ying HUANG. Segmented pneumatic soft actuator for rehabilitation training[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1127-1134.
[4] Jie WANG,Zhao LI,Zi-ran LI. Research on tread wear behavior of all steel radial truck tire[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1615-1624.
[5] Dao-sheng LING,Wen-jun SHENG,Bo HUANG,Yun ZHAO. Influence of pavement unidirectional constraint on aircraft vibration response[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1684-1693.
[6] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[7] Xing-yu ZENG,Jun-yang LI,Jia-xu WANG,Ting TANG,Cong LI. Design and modification of harmonic double circular arc tooth profile based on finite element method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1548-1557.
[8] Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.
[9] Chun-xiao LIU,Lian-jin TAO,Jin BIAN,Yu ZHANG,Jin-hua FENG,Xi-tong DAI,Zhao-qing WANG. Shaking table test of seismic effect of liquefiable soil layer on underground structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1327-1338.
[10] Jun-xia JIANG,Hai-peng LIAO. Stiffness modeling and structure optimization of heavy-duty intelligent stacking equipment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1948-1959.
[11] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[12] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[13] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[14] Jie LAI,Yun LIU,Jian-ping XIN,Wei WANG,Chen-qiang GAO,Hai-bo ZHU. Shaking table test and numerical analysis on reinforced slope at Dali West Railway Station[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 870-878.
[15] Yong CHEN,Yong-quan LI,Chong-lei XIE,Kuang-liang QIAN,Ye-sheng ZHANG,Peng-yun CHENG,Xuan-zuo YE. Pushover test study of masonry structure restrained by steel-tube-bundle shear walls[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 499-511.