Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (7): 1327-1338    DOI: 10.3785/j.issn.1008-973X.2021.07.012
    
Shaking table test of seismic effect of liquefiable soil layer on underground structure
Chun-xiao LIU1,2(),Lian-jin TAO1,*(),Jin BIAN3,Yu ZHANG1,Jin-hua FENG4,Xi-tong DAI5,Zhao-qing WANG6
1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
2. China Railway Fifth Survey And Design Institute Group CO., LTD., Beijing 102600, China
3. College of Ocean Engineering, Guangdong Ocean University, Zhanjiang 524088, China
4. State Nuclear Electric Power Planning Design & Research Institute CO., LTD., Beijing 100095, China
5. Qingdao Conson Construction & Investment Co., Ltd., Qingdao 266100, China
6. Beijing Urban Construction Investment and Development Co., Ltd., Beijing 101300, China
Download: HTML     PDF(4391KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the common single-layer double-span cross-section structure in subway tunnel construction at present, three groups of shaking table tests were carried out, in which the liquefiable soil layer was all around the structure, at the bottom of the structure, and the structure was located in non-liquefied soil layer. Relationship among foundation soil acceleration, pore water pressure and structural displacement was analyzed. Results show that the acceleration amplification coefficient of foundation soil changes along the buried depth, which is affected by ground motions, peak values of ground motion and sites showing different variation rules. The soil adjacent to both sides of the structure is not easy to liquefaction. The soil is easy to liquefaction in the range of 45 degrees at the bottom of the structure. The most serious liquefaction area is distributed at a certain distance between the horizontal sides of the structure and on both sides of the bottom of the structure. The numerical distribution of excess pore pressure ratio corresponds well to the Arias intensity of seismic waves.



Key wordsliquefaction      rectangular tunnel      shaking table test      acceleration      pore water pressure     
Received: 04 May 2020      Published: 05 July 2021
CLC:  O 319.56  
Fund:  国家重点研发计划资助项目(2017YFC0805403);国家自然科学基金资助项目(41877218)
Corresponding Authors: Lian-jin TAO     E-mail: liuchunxiao17@163.com;ljtao@bjut.edu.cn
Cite this article:

Chun-xiao LIU,Lian-jin TAO,Jin BIAN,Yu ZHANG,Jin-hua FENG,Xi-tong DAI,Zhao-qing WANG. Shaking table test of seismic effect of liquefiable soil layer on underground structure. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1327-1338.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.07.012     OR     https://www.zjujournals.com/eng/Y2021/V55/I7/1327


可液化土层对地下结构地震影响的振动台试验

针对目前地铁区间隧道建设中常见的单层双跨断面形式结构,开展结构整体位于可液化土层、结构底部存在可液化土层、结构位于非液化土层3组振动台试验,分析地基土加速度、孔隙水压力和结构位移之间的关系. 结果表明,地基土加速度放大系数沿埋深受地震动、地震动峰值、场地的影响展现出不同的变化规律;紧邻结构两侧位置处土体不易液化;结构底部0~45度范围内土体容易液化;液化程度最严重区域分布在结构水平两侧一定距离处和结构底部两侧位置;超孔压比数值分布大小同地震波自身Arias强度有很好的对应关系.


关键词: 液化,  矩形隧道,  振动台试验,  加速度,  孔隙水压力 
Fig.1 Soil layer distribution and structure location under different working conditions
Fig.2 Ground motion acceleration time histories and Fourier spectra of shaking table test
Fig.3 Arias intensity of seismic wave
输入波类型 编号 ap Td/s
北京场地波 BJ-1 0.1 20
北京场地波 BJ-2 0.2 20
北京场地波 BJ-3 0.3 20
名山波 MS-1 0.1 150
名山波 MS-3 0.3 150
名山波 MS-5 0.5 150
Kobe波 KO-1 0.1 27
Kobe波 KO-2 0.3 27
Kobe波 KO-3 0.5 27
Tab.1 Loading conditions of shaking table test
Fig.4 Gauge distribution of different working conditions
Fig.5 Variation of acceleration magnification factor along height of foundation under different working conditions
Fig.6 Relationship between displacement time history curve and excess pore pressure ratio time history curve of structure at MS-5 position
Fig.7 Horizontal variation of maximum excess pore pressure ratio of soil on right side of structure
Fig.8 Vertical variation of maximum excess pore pressure ratio of soil on right side of structure
Fig.9 Horizontal variation of maximum excess pore pressure ratio at bottom of adjacent structure
Fig.10 Horizontal variation of maximum pore pressure ratio at depth of 0.265 m at bottom of structure
Fig.11 Variation of maximum excess pore pressure ratio of soil directly below structure with depth
Fig.12 Horizontal variation of maximum excess pore pressure ratio of soil adjacent to structure at bottom of structure
Fig.13 Horizontal variation of maximum excess pore pressure ratio of soil at 0.265 m buried depth at bottom of structure
Fig.14 Horizontal variation of maximum excess pore pressure ratio of soil at 0.425 m buried depth at bottom of structure
Fig.15 Peak field of excess pore pressure ratio in right half of middle line of model
Fig.16 Peak field of excess pore pressure ratio in right half of bottom of structure
Fig.17 Relationship between excess pore water pressure ratio time history, seismic acceleration time history and Arias intensity of monitoring points
[1]   陈育民, 刘汉龙, 周云东 液化及液化后砂土的流动特性分析[J]. 岩土工程学报, 2006, 28 (9): 1139- 1143
CHEN Yu-min, LIU Han-long, ZHOU Yun-dong Analysis on flow characteristics of liquefied and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28 (9): 1139- 1143
doi: 10.3321/j.issn:1000-4548.2006.09.017
[2]   HOLZER T L, YOUD T L Liquefaction, ground oscillation, and soil deformation at the wildlife array, california[J]. Bulletin of the Seismological Society of America, 2007, 97 (3): 961- 976
doi: 10.1785/0120060156
[3]   CHOU H S, YANG C Y, HSIEH B J, et al A study of liquefaction related damages on shield tunnels[J]. Tunnelling and Underground Space Technology, 2001, 16 (3): 185- 193
doi: 10.1016/S0886-7798(01)00057-8
[4]   BERRILL J B. A study of high-frequency strong ground motion from the San Fernando earthquake[D]. Pasadena: California Institute of Technology, 1975.
[5]   KOSEKI J, MATSUO O, NINOMIYA Y, et al Uplift of sewer manholes during the 1993 Kushiro-Oki earthquake[J]. Soils and Foundations, 1997, 37 (1): 109- 121
doi: 10.3208/sandf.37.109
[6]   HAMADA M, ISOYAMA R, WAKAMATSU K Liquefaction-induced ground displacement and its related damage to lifeline facilities[J]. Soils and Foundations, 1996, 36 (Suppl.): 81- 97
[7]   李吉. 基于构件破坏概率的地铁车站震害预测方法研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2016.
LI Ji. Seismic damage prediction method of subway station based on component failure probability[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2016.
[8]   陈国兴, 左熹, 王志华, 等 地铁车站结构近远场地震反应特性振动台试验[J]. 浙江大学学报: 工学版, 2010, 44 (10): 1955- 1961
CHEN Guo-xing, ZUO Xi, WANG Zhi-hua, et al Shaking table model test of subway station structure under far field and near field ground motion[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (10): 1955- 1961
doi: 10.3785/j.issn.1008-973X.2010.10.019
[9]   左熹, 陈国兴, 王志华, 等 近远场地震动作用下地铁车站结构地基液化效应的振动台试验[J]. 岩土力学, 2010, 31 (12): 3733- 3740
ZUO Xi, CHEN Guo-xing, WANG Zhi-hua, et al Shaking table test on ground liquefaction effect of soil-metro station structure under near-and-far field ground motions[J]. Rock and Soil Mechanics, 2010, 31 (12): 3733- 3740
doi: 10.3969/j.issn.1000-7598.2010.12.007
[10]   陈苏, 陈国兴, 戚承志, 等 可液化场地上三拱立柱式地铁地下 车站结构地震反应特性振动台试验研究[J]. 岩土力学, 2015, 36 (7): 1899- 1914
CHEN Su, CHEN Guo-xing, QI Cheng-zhi, et al A shaking table-based experimental study of seismic response of three-arch type's underground subway station in liquefiable ground[J]. Rock and Soil Mechanics, 2015, 36 (7): 1899- 1914
[11]   安军海, 陶连金, 王焕杰, 等 可液化场地下盾构扩挖地铁车站结构地震破坏机制振动台试验[J]. 岩石力学与工程学报, 2017, 36 (8): 2018- 2030
AN Jun-hai, TAO Lian-jin, WANG Huan-jie, et al A shaking table-based experimental study of seismic response of a shield-enlarge-dig type subway station structure in liquefiable ground[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (8): 2018- 2030
[12]   TAMARI Y, TOWHATA I Seismic soil-structure interaction of cross sections of flexible underground structures subjected to soil liquefaction[J]. Soils and Foundations, 2003, 43 (2): 69- 87
doi: 10.1016/S0038-0806(20)30803-9
[13]   CHEN G X, CHEN S, ZUO X Shaking-table tests and numerical simulations on a subway structure in soft soil[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 13- 28
doi: 10.1016/j.soildyn.2014.12.012
[14]   CHEN G, WANG Z, ZUO X, et al Shaking table test on the seismic failure characteristics of a subway station structure on liquefiable ground[J]. Earthquake Engineering and Structural Dynamics, 2013, 42 (10): 1489- 1507
doi: 10.1002/eqe.2283
[15]   邹炎. 地铁隧道地震反应规律和震害机理研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2012.
ZOU Yan. Study on seismic response law and damage mechanism of subway tunnels[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2012.
[16]   许成顺, 窦鹏飞, 杜修力, 等 液化场地−结构动力相互作用振动台试验发展与回顾[J]. 北京工业大学学报, 2019, 45 (5): 502- 514
XU Cheng-shun, DOU Peng-fei, DU Xiu-li, et al Review on shaking table test of dynamic interaction of liquefiable site-structures system: retrospect and prospect[J]. Journal of Beijing University of Technology, 2019, 45 (5): 502- 514
[17]   戴志广. 基于振动台试验开展砂土液化的机理与判别研究[D]. 舟山: 浙江海洋大学, 2017.
DAI Zhi-guang. Study on mechanism and discrimination of sand liquefaction based on shaking table test[D]. Zhoushan: Zhejiang Ocean University, 2017.
[18]   许成顺, 高畄成, 陈苏, 等 考虑地震动持时的液化场地−桩基振动台试验设计[J]. 地震工程与工程振动, 2017, 37 (5): 51- 57
XU Cheng-shun, GAO Liu-cheng, CHEN Su, et al Shaking-table tests design on a liquefaction foundation-structure considering compressed ground motion[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37 (5): 51- 57
[19]   AZADI M, MIR MOHAMMAD HOSSEINI S M Analyses of the effect of seismic behavior of shallow tunnels in liquefiable grounds[J]. Tunnelling and Underground Space Technology, 2010, 25 (5): 543- 552
doi: 10.1016/j.tust.2010.03.003
[20]   刘春晓, 陶连金, 边金, 等 可液化土层对地下结构地震反应的影响研究[J]. 铁道标准设计, 2018, 62 (2): 133- 139
LIU Chun-xiao, TAO Lian-jin, BIAN Jin, et al Research on seismic response of underground structure on liquefiable soil[J]. Railway Standard Design, 2018, 62 (2): 133- 139
[21]   LIU C X, TAO L J, BIAN J, et al Influence of the liquefied soil layer distribution on the seismic response of rectangular tunnel[J]. Journal of Southeast University, 2018, 34 (2): 259- 268
[22]   刘春晓, 陶连金, 边金, 等 可液化土层的位置对土层-地下结构地震反应的影响[J]. 湖南大学学报: 自然科学版, 2017, 44 (5): 143- 156
LIU Chun-xiao, TAO Lian-jin, BIAN Jin, et al Research on seismic response of the soil and underground structure caused by liquefiable soil and different positions[J]. Journal of Hunan University: Natural Sciences, 2017, 44 (5): 143- 156
[23]   刘春晓, 陶连金, 边金, 等. 可液化土层对土−地下结构地震反应的振动台试验设计[J/OL]. 防灾减灾工程学报(2020-11-19). DOI: 10.13409/j.cnki.jdpme.202004085.
LIU Chun-xiao, TAO Lian-jin, BIAN Jin, et al. Experimental design of shaking table test on seismic response of soil and underground structures on liquefiable soil[J]. Journal of Disaster Prevention and Mitigation Engineering (2020-11-19). DOI: 10.13409/j.cnki.jdpme.202004085.
[24]   陈苏. 复杂环境下地铁地下结构地震反应特性研究[D]. 南京: 南京工业大学, 2014.
CHEN Su. Seismic response characteristic of underground subway station in complex conditions[D]. Nanjing: Nanjing University of Technology, 2014.
[1] Dao-sheng LING,Wen-jun SHENG,Bo HUANG,Yun ZHAO. Influence of pavement unidirectional constraint on aircraft vibration response[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1684-1693.
[2] Jie LAI,Yun LIU,Jian-ping XIN,Wei WANG,Chen-qiang GAO,Hai-bo ZHU. Shaking table test and numerical analysis on reinforced slope at Dali West Railway Station[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 870-878.
[3] Ya-feng LI,Ru-song NIE,Wu-ming LENG,Long-hu CHENG,Hui-hao MEI,Jun-li DONG. Deformation characteristics of fine-grained soil under cyclic dynamic loading with intermittence[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2109-2119.
[4] Yong-qiang OUYANG,Xin-yan ZHANG. Design of energy-saving automated storage and retrieval system considering acceleration and deceleration of storage and retrieval machine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1681-1688.
[5] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO. Life prediction of coated steel with individual difference in magnesium oxychloride cement concrete[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2309-2316.
[6] DONG Wen-kui, GAO Guang-yun, SONG Jian, XUE Shuai. Effect of near-fault pulse-like ground motion with fling-step on site liquefaction[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1651-1657.
[7] XIA Yi-min, QIAN Cong, LI Zheng-guang, Mei Yong-bing. Vibration characteristics of TBM supporting-thrusting system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 233-239.
[8] JIANG Bo, XIE Lun, LIU Xin, HAN Jing, WANG Zhi-liang. Micro-expression spotting using optical flow magnitude estimation[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 577-583.
[9] LAN Fan, PAN Yun, YAN Xiao lang, HUAN Ruo hong, CHENG Kwang ting. GPU acceleration for network-on-chip yield evaluation[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 160-167.
[10] CONG Xiao yan, WANG Zeng cai, CHENG Jun. Self-adaptive curve gear-shifting strategy for automatic transmission vehicles[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1570-1577.
[11] SHEN Yan bin, CHEN Ling, GUO Hao dong, CHEN Gen cai. Deep learning based activity recognition independent of device orientation and placement[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1141-1148.
[12] LI Zhenghao,LOU Wenjuan,ZHANG Ligang,BIAN Rong,DUAN Zhiyong. Numerical simulation of effects of topographic factors on wind speed in col[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 848-855.
[13] JIN Wei feng,ZHANG Li you,CHEN Xiao liang,CHENG Ze hai. Study on liquefaction simulation of coupled particle-fluid assembly subject to bi-directional cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2135-2142.
[14] YANG Ting-jun, ZHU Bo, LIU Yu. Fast calibration algorithm for semi-immersive environment using improved vertex springs model[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 676-682.
[15] WANG Hao-wei, XU Ting-xue, LIU Yong. Remaining useful life prediction method based on Gamma processes with random parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 699-704.