Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (9): 1684-1693    DOI: 10.3785/j.issn.1008-973X.2021.09.010
    
Influence of pavement unidirectional constraint on aircraft vibration response
Dao-sheng LING1,2(),Wen-jun SHENG1,Bo HUANG1,*(),Yun ZHAO3
1. Institute of Geotechnical Engineering, Key Laboratory of Soft Soils and Geoenvironmental Engineering, Ministry of Education, Zhejiang University, Hangzhou 310058, China
2. School of Civil Engineering and Architecture, NingboTech University, Ningbo 315100, China
3. College of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou 450001, China
Download: HTML     PDF(1802KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A six-degree-of-freedom model of the aircraft with unidirectional constraint on pavement was established based on the B737-800 aircraft. The simulation calculation of aircraft taxiing were carried out on the pavement with single and stochastic uneven excitation respectively. Results show that, under the single uneven excitation input, the vibration response of the aircraft no longer changes monotonously with the wavelength and amplitude of the pavement deformation and the aircraft taxiing speed but the deformation model of the pavement, which is significantly different from that without considering the unidirectional constraint of pavement. The sensitive band of different taxiing speed is not the same. Under the stochastic uneven excitation input, the time when the wheels disengage from the pavement increases with the deterioration of pavement roughness. When the international roughness index of pavement is 3 m/km and the aircraft taxis at a speed of more than 70 m/s, and the taxing distance of the wheel separated from the pavement accounts for more than 1/4. The main frequency of the aircraft vibration response becomes lower, and the high-frequency vibration is greatly attenuated, and the vibration energy is concentrated to lower frequency. Between the two indexes for evaluating the roughness of pavement, the vertical maximum acceleration of the aircraft’s center of mass increases compared with that without considering the unidirectional constraint, while the root mean square of the vertical acceleration decreases because the downward acceleration response is weakened by the departure of the wheels from the pavement.



Key wordsairport pavement      unidirectional constraint      dynamic response analysis      roughness      vertical acceleration     
Received: 25 September 2020      Published: 20 October 2021
CLC:  U 416  
Fund:  国家重点基础研究发展计划资助项目(2014CB047005);国家自然科学基金资助项目 (51988101)
Corresponding Authors: Bo HUANG     E-mail: dsling@zju.edu.cn;cehuangbo@zju.edu.cn
Cite this article:

Dao-sheng LING,Wen-jun SHENG,Bo HUANG,Yun ZHAO. Influence of pavement unidirectional constraint on aircraft vibration response. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1684-1693.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.09.010     OR     https://www.zjujournals.com/eng/Y2021/V55/I9/1684


道面单向约束作用对飞机振动响应的影响

基于B737-800机型,建立道面单向约束的飞机六自由度模型,分别进行单个和随机不平整激励道面上飞机滑跑仿真计算. 结果表明:单个不平整激励输入下,机体振动响应与道面变形模式相关,不再随道面变形波长、幅值及飞机滑跑速度单调变化,与不考虑道面单向约束作用时有显著差异,且不同滑跑速度的敏感波段不相同. 在随机不平整激励输入下,机轮脱离道面时间随道面平整度劣化而增加. 当跑道国际平整指数为3 m/km时,飞机以超过70 m/s的速度滑跑,机轮可能脱离道面的滑跑距离占比超过1/4. 飞机振动响应主频变低、高频振动大幅衰减,振动能量向更低频集中. 在评价机场跑道平整度的2个指标中,机体质心竖向最大加速度相较于不考虑单向约束作用时有所增大,竖向加速度均方根因机轮脱离道面削弱负向加速度响应有所减小.


关键词: 机场道面,  单向约束作用,  动力响应分析,  平整度,  竖向加速度 
Fig.1 B737-800 airplane
Fig.2 Six-degree-of-freedom model of B737-800 airplane
参数 符号 单位 数值
机身质量 m0 kg 73 500
前起落架(含机轮)质量 m1 kg 256
主起落架(含机轮)质量 m2、m3 kg 1 146
机体绕质心俯仰转动惯量 IY kg·m2 3 660 000
机体绕质心横滚转动惯量 IX kg·m2 2 610 000
前起落架悬架刚度系数 k11 N/m 950 000
主起落架悬架刚度系数 k21、k31 N/m 2 760 000
前起落架轮胎刚度系数 k12 N/m 1780 000
主起落架轮胎刚度系数 k22、k32 N/m 12 800 000
前起落架悬架阻尼系数 C11 N·s/m 18 100
主起落架悬架阻尼系数 C21、C31 N·s/m 108 000
主起落架连线与对称轴
的交点到质心的距离
l1 m 1.15
前起落架与质心的距离 l2 m 14.45
主起落架到对称轴的距离 l3、l4 m 2.86
驾驶舱与质心的距离 l5 m 16.05
翼展面积 w m2 124.60
升力系数 C1 / 1.36
空气密度 ρ kg/m3 1.293
Tab.1 Model calculation parameters of B737-800 airplane
工况 机轮与道面接触形式 K(2,2) K(3,3) K(4,4) F(2,1) F(3,1) F(4,1)
1 三组起落架机轮全着地 K11+K12 K21+K22 K31+K32 ?m1g+K12h1(x) ?m2g+K22h2(x) m3g+K32h3(x)
2 前起落架机轮着地,两主起落架机轮离地 K11+K12 K21 K31 ?m1g+K12h1(x) ?m2g ?m3g
3 前起落架机轮离地,主起落架机轮着地 K11 K21+K22 K31+K32 ?m1g ?m2g+K22h2(x) m3g+K32h3(x)
4 前起落架和右主起落架机轮着地,左主起落架机轮离地 K11+K12 K21+K22 K31 ?m1g+K12h1(x) ?m2g+K22h2(x) ?m3g
5 前起落架和左主起落架机轮着地,右主起落架机轮离地 K11+K12 K21 K31+K32 ?m1g+K12h1(x) ?m2g m3g+K32h3(x)
6 三组起落架机轮全离地 K11 K21 K31 ?m1g ?m2g ?m3g
Tab.2 Combination of related elements in Ki and FiX under different contact forms between wheel and pavement
Fig.3 Displacement curve of pavement, center of mass and main landing gear wheel with single uplift deformation mode
Fig.4 Displacement curve of main landing gear wheel with subsidence deformation mode
Fig.5 Displacement curve of main landing gear wheel with uplift deformation mode
Fig.6 Vertical acceleration-time curve of aircraft′s center of mass under different unevenness modes without considering unilateral constraints
Fig.7 Vertical acceleration-time curve of aircraft′s center of mass under different unevenness modes with considering unilateral constraints
Fig.8 Displacement curve of main landing gear wheel and vertical acceleration-time curve of aircraft’s center of mass with long wavelength, subsidence deformation mode
Fig.9 Displacement curve of main landing gear wheel and vertical acceleration-time curve of aircraft’s center of mass with long wavelength, uplift deformation mode
Fig.10 Variation of amax under multi-factor coupling with settlement pavement
Fig.11 Variation of amax under multi-factor coupling with uplifted pavement
Fig.12 Displacement curve of main landing gear wheel, vertical acceleration-time curve and acceleration power spectrum curve of mass center when airplane taxiing on random pavement
IRI/(m·km?1) 道面评价[1]
(水泥混凝土道面)
Tr/%
1 0.01~0.62
2 11.11~13.67
3 28.72~39.81
4 44.42~50.04
5 50.44~56.10
Tab.3 Wheels of Tr airplane taxiing on different IRI pavement
Fig.13 Changes of amax, arms with IRI with and without considering unilateral constraints
[1]   中国民用航空局. 民用机场道面评价管理技术规范: MH/T 5024—2019[S]. 北京: 中国民航出版社, 2019: 26-28.
[2]   EMERY S, HEFER A, HORAK E. Roughness of runways and significance of appropriate specifications and measurement [C]// 11th Conference on Asphalt Pavements for Southern Africa. Sun City: CAPSA, 2015: 10.
[3]   CARDOSO S H Aircraft-based pavement surface roughness assessment[J]. Transportation Research Record Journal of the Transportation Research Board, 2007, 2007 (1): 104- 110
doi: 10.3141/2007-13
[4]   程国勇, 郭稳厚, 雷亚伟 机场道面平整度评价技术进展及发展方向[J]. 中国民航大学学报, 2016, 34 (2): 36- 41
CHENG Guo-yong, GUO Wen-hou, LEI Ya-wei Progress and developing trend of airport pavement roughness evaluation technology[J]. Journal of Civil Aviation University of China, 2016, 34 (2): 36- 41
doi: 10.3969/j.issn.1674-5590.2016.02.009
[5]   GERVAIS E L. Runway roughness measurement, quantification and application: the Boeing approach [C]// Aircraft/pavement Interaction. New York: ASCE, 2015.
[6]   王广德, 韩黎明, 柴震林, 等 机场跑道地基差异沉降控制标准研究[J]. 工程地质学报, 2014, 22 (Suppl. 1): 498- 505
WANG Guang-de, HAN Li-ming, CHAI Zhen-lin, et al Research about foundation differential settlement controlling standards for airport runway[J]. Journal of Engineering Geology, 2014, 22 (Suppl. 1): 498- 505
[7]   凌建明, 刘诗福, 李萌, 等 波音平整度评价方法的局限性分析[J]. 同济大学学报:自然科学版, 2018, 46 (8): 1035- 1041
LING Jian-ming, LIU Shi-fu, LI Meng, et al Application limitation of Boeing bump to evaluation runway roughness[J]. Journal of Tongji University: Natural, Science, 2018, 46 (8): 1035- 1041
[8]   凌建明, 刘诗福, 袁捷, 等 采用IRI评价机场道面平整度的适用性[J]. 交通运输工程学报, 2017, 17 (1): 20- 27
LING Jian-ming, LIU Shi-fu, YUAN Jie, et al Applicability of IRI based evaluation of airport pavement roughness[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (1): 20- 27
doi: 10.3969/j.issn.1671-1637.2017.01.003
[9]   GERARDI A G. Digital simulation of flexible aircraft response to symmetrical and asymmetrical runway roughness [R/OL]. [2021-08-22]. https://www.readcube.com/articles/10.21236%2Fada053588.
[10]   凌建明, 刘诗福, 袁捷, 等 不平整激励下机场道面和公路路面平整度评价综合分析[J]. 同济大学学报:自然科学版, 2017, 45 (4): 519- 526
LING Jian-ming, LIU Shi-fu, YUAN Jie, et al Comprehensive analysis of pavement roughness evaluation for airport and road with different roughness excitation[J]. Journal of Tongji University: Natural Science, 2017, 45 (4): 519- 526
[11]   KANAZAWA H, SU K, NOGUCHI T, et al Evaluation of airport runway pavement based on pilots' subjective judgement[J]. International Journal of Pavement Engineering, 2010, 11 (3): 189- 195
doi: 10.1080/10298430903311792
[12]   蔡宛彤, 种小雷, 王海服, 等 基于ADAMS的机场道面平整度评价方法[J]. 空军工程大学学报:自然科学版, 2014, 15 (1): 15- 19
CAI Wan-tong, CHONG Xiao-lei, WANG Hai-fu, et al An evaluation method for roughness of airport pavement based on ADAMS[J]. Journal of Air Force Engineering University: Natural Science Edition, 2014, 15 (1): 15- 19
[13]   DURÁN J B C, JÚNIOR J L F Airport pavement roughness evaluation based on cockpit and center of gravity vertical accelerations[J]. Transportes, 2020, 28 (1): 147- 159
doi: 10.14295/transportes.v28i1.1932
[14]   LOPRENCIPE G, ZOCCALI P Comparison of methods for evaluating airport pavement roughness[J]. International Journal of Pavement Engineering, 2019, 20 (7): 782- 791
doi: 10.1080/10298436.2017.1345554
[15]   ŽURAULIS V, LEVULYTE L, SOKOLOVSKIJ E The impact of road roughness on the duration of contact between a vehicle wheel and road surface[J]. Transport, 2014, 29 (4): 431- 439
doi: 10.3846/16484142.2014.984330
[16]   BOEING. 737 Airplane characteristics for airport planning [R/OL].[2021-08-22]. https://www.boeing.com/resources/boeingdotcom/commercial/airports/acaps/737_RevA.pdf.
[17]   罗汀, 刘引, 韩黎明, 等 高填方机场工后沉降监测及数据分析[J]. 中国民航大学学报, 2017, 35 (3): 27- 32
LUO Ting, LIU Yin, HAN Li-ming, et al Post-construction settlement monitoring and data analysis of high filling engineering of airport[J]. Journal of Civil Aviation University of China, 2017, 35 (3): 27- 32
doi: 10.3969/j.issn.1674-5590.2017.03.007
[18]   胡春飞, 韩卿爱, 吕耀志 机场跑道破损坑槽对飞机滑跑动力的影响[J]. 重庆交通大学学报:自然科学版, 2013, 32 (4): 717- 724
HU Chun-fei, HAN Qing-ai, LV Yao-zhi Dynamic influence of distress runway pothole on aircraft running[J]. Journal of Chongqing Jiaotong University: Natural Science, 2013, 32 (4): 717- 724
[19]   BIAN X, CHEN Y, YE X. Environmental Vibrations and Transportation Geodynamics [M]// ZHAO Y, LING D, HUANG B. Effects of inhomogeneous subgrade settlement to aircraft vibration and its control standard. Singapore: Springer, 2018: 713-726.
[20]   程国勇, 郭稳厚, 雷亚伟 基于MATLAB的机场道面不平度模拟技术研究[J]. 公路工程, 2016, 41 (3): 5- 7
CHENG Guo-yong, GUO Wen-hou, LEI Yawei Research of airport pavement roughness simulation technology based on Matlab[J]. Highway Engineering, 2016, 41 (3): 5- 7
doi: 10.3969/j.issn.1674-0610.2016.03.002
[21]   MORRIS G J, HALL A W. Recent studies of runway roughness [C]// NASA Conference on Aircraft Operating Problems. Hampton: NASA Special Publication, 1965: 1-7.
[22]   盖利庆. 军用机场跑道表面平整度分析及处理[D]. 南京: 东南大学, 2003: 11.
GAI Li-qing. Analysis and treatment of military airfield surface smoothness [D]. Nanjing: Southeast University, 2003: 11.
[1] Fa-sheng MIAO,Yi-ping WU,Lin-wei LI,Kang LIAO,Yang XUE. Prediction of joint roughness coefficient of rock mass based on Boosting-decision tree C5.0[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 483-490.
[2] Xi CHEN,Ya-wu ZENG. Improved morphology characterization method and sampling effect of rough rock joint[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2161-2169.
[3] Fang-fang TAN,Jun-jiang ZHU,Tian-hong YAN,Zhi-qiang GAO,Ling-song HE. Surface roughness prediction of 6061 aluminum alloy based on GA-WPT-ELM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 40-47.
[4] HU Cheng-bao, WANG Yun-gang, LING Dao-sheng. Physical essence and influence of model parameters on dynamic response of Rayleigh damping[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1284-1290.
[5] LIU Li, YANG Yin tang. Effection of morphology of SiC/SiO2 interface on mobility characteristics of MOS devices[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 392-396.
[6] DONG Hui yue, ZHU Ling sheng, ZHANG Ming, LI Shao bo, LUO Shui jun. Orbital milling method of aircraft skins trimming[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2033-2039.
[7] CHEN Yi-fan, CHENG Wei-ping, JIANG Jian-qun. A robust river roughness calibration model[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1361-1365.