Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (11): 2161-2169    DOI: 10.3785/j.issn.1008-973X.2021.11.017
    
Improved morphology characterization method and sampling effect of rough rock joint
Xi CHEN(),Ya-wu ZENG*()
School of Civil Engineering, Wuhan University, Wuhan 430071, China
Download: HTML     PDF(1846KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The scanning tests were conducted on three groups of natural rock joints using the X3 3D laser scanner, in order to characterize the morphological characteristics of rough rock joint surface quantitatively. The joint surface was reconstructed based on the Delaunay triangulation, the relationship between the asperity and the shear direction was analyzed, and a new model was developed to characterize the relation between the effective dip angle and the potential contact area. Besides, the relationship between joint roughness and the sampling interval was investigated. Results show that the results of the new model has a good agreement with the morphological test result. In addition, the new model has better accuracy compared with Grasselli’s model. A new roughness index was proposed based on the proposed model, and the new index is compatible with dimensional analysis and can capture the anisotropic characteristics of joint roughness. The new index can be used to characterize the roughness of natural rock joints. In addition, it is found that the roughness index decreases as the sampling point distance increases. Under certain circumstances, the increase in the sampling point distance in a local area will cause the roughness to decrease, which is because the first-order roughness feature of the joint is exaggerated.



Key wordsrock joint      three-dimensional roughness      effective dip angle      potential contact area ratio      sampling effect     
Received: 09 September 2020      Published: 05 November 2021
CLC:  TU 45  
Fund:  国家自然科学基金资助项目(41772308)
Corresponding Authors: Ya-wu ZENG     E-mail: 1780164218@qq.com;zengyw@whu.edu.cn
Cite this article:

Xi CHEN,Ya-wu ZENG. Improved morphology characterization method and sampling effect of rough rock joint. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2161-2169.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.11.017     OR     https://www.zjujournals.com/eng/Y2021/V55/I11/2161


粗糙节理的改进形貌表征方法及采样点距效应

为了定量表征粗糙岩石节理的三维形貌特征,采用三维工业扫描仪X3对3组天然红砂岩节理进行三维激光扫描试验. 基于Delaunay点云离散算法重构岩石节理面,分析单个微单元体与剪切方向的几何关系,提出改进模型来描述潜在接触部分随表面有效倾角门槛值的变化特征,并研究节理粗糙度随采样点距的变化规律. 结果表明:改进模型与试验结果较吻合,精度优于传统的Grasselli模型. 基于改进模型提出新的粗糙度评估参数,该指标满足量纲分析的要求,能准确捕捉节理粗糙度的各向异性特征,可以用于表征天然岩石节理的粗糙度. 发现节理形貌表征存在采样点距效应. 随着采样点距的增大,节理粗糙度不断减小. 在特殊情形下,采样点距增大会导致粗糙度增大,主要是因为放大了节理的一阶粗糙度特征.


关键词: 岩石节理,  三维粗糙度,  有效倾角,  潜在接触面积比,  采样点距效应 
Fig.1 Three-dimensional scanner X3 and scanning process
Fig.2 Morphology of rock joint surface
Fig.3 Relationship between asperity and shear direction[24]
Fig.4 Potential contact area corresponding to different critical effective angles
Fig.5 Contact area ratio corresponding to different critical effective angles
Fig.6 Flow chart of joint morphology calculation
Fig.7 Fitting accuracy of each model in forward shear direction
Fig.8 Fitting accuracy of each model in reverse shear direction
Fig.9 Radar plot of shear direction
Fig.10 Anisotropy of roughness
Fig.11 Morphology characteristics of joint under different sampling intervals
Fig.12 Variation of $\theta^*_{\rm{r}}$/k of each joint with shear direction and sampling interval
Fig.13 Schematic diagram of roughness index increasing with sampling interval
[1]   LI Y, TANG C, LI D, et al A new shear strength criterion of three-dimensional rock joints[J]. Rock Mechanics and Rock Engineering, 2020, 53 (3): 1477- 1483
doi: 10.1007/s00603-019-01976-5
[2]   TIAN Y, LIU Q, LIU D, et al. Updates to Grasselli′s peak shear strength model[J]. Rock Mechanics and Rock Engineering, 2018, 51(7): 2115−2133.
[3]   BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics and Rock Engineering, 1977, 10(1): 1−54.
[4]   葛云峰, 唐辉明, 黄磊, 等. 岩体结构面三维粗糙度系数表征新方法[J]. 岩石力学与工程学报, 2012, 31(12): 2508−2517.
GE Yun-feng, TANG Hui-ming, HUANG Lei, et al. A new representation method for three-dimensional joint roughness coefficient of rock mass discontinuities[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2508−2517.
[5]   LIU X, ZHU W, YU Q, et al. Estimating the joint roughness coefficient of rock joints from translational overlapping statistical parameters[J]. Rock Mechanics and Rock Engineering, 2018, 52(3): 753−769.
[6]   ZHANG G, KARAKUS M, TANG H, et al. A new method estimating the 2D joint roughness coefficient for discontinuity surfaces in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 191−198.
[7]   TATONE BSA, GRASSELLI G A new 2D discontinuity roughness parameter and its correlation with JRC[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47: 1391- 1400
doi: 10.1016/j.ijrmms.2010.06.006
[8]   班力壬, 戚承志, 燕发源, 等. 岩石节理粗糙度新指标及新的JRC确定方法[J]. 煤炭学报, 2019, 44(4): 1059−1065.
BAN Li-ren, QI Cheng-zhi, YAN Fa-yuan, et al. A new method for determining the JRC with new roughness parameters[J]. Journal of China Coal Society, 2019, 44(4): 1059−1065.
[9]   BELEM T, HOMAND-ETIENNE F, SOULEY M. Quantitative parameters for rock joint surface roughness[J]. Rock Mechanics and Rock Engineering, 2000, 33(4): 217−242.
[10]   唐志成, 黄润秋, 张建明, 等. 含坡度均方根的节理峰值剪切强度经验公式[J]. 岩土力学, 2015, 36(12): 3433−3438.
TANG Zhi-cheng, HUANG Run-qiu, ZHANG Jian-ming, et al. Empirical peak shear strength criterion for rock joints based on slope root-mean-square[J]. Rock and Soil Mechanics, 2015, 36(12): 3433 −3438.
[11]   EL-SOUDANI S M. Profilometric analysis of fractures[J]. Metallography, 1978, 11(3): 247−336.
[12]   CHEN S J, ZHU W C, YU Q L, et al Characterization of anisotropy of joint surface roughness and aperture by variogram approach based on digital image processing technique[J]. Rock Mechanics and Rock Engineering, 2016, 49 (3): 855- 876
doi: 10.1007/s00603-015-0795-x
[13]   GRASSELLI G, WIRTH J, EGGER P. Quantitative three-dimensional description of a rough surface and parameter evolution with shearing[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6): 789−800.
[14]   GRASSELLI G. Shear strength of rock joints based on quantified surface description[D]. Zurich: Swiss Federal Institute of Technology, 2001.
[15]   GRASSELLI G. Manuel Rocha medal recipient shear strength of rock joints based on quantified surface description[J]. Rock Mechanics and Rock Engineering, 2006, 39(4): 295−314.
[16]   TANG Z C, JIAO Y Y, WONG L N Y, et al. Choosing appropriate parameters for developing empirical shear strength criterion of rock joint: review and new insights[J]. Rock Mechanics and Rock Engineering, 2016, 49(11): 4479−4490.
[17]   唐志成, 刘泉声, 夏才初, 等 . 确定岩石节理Maksimovic峰值抗剪强度准则中“粗糙度角Δφ”的新方法[J]. 岩土力学, 2014, 35(2): 551−555.
TANG Zhi-cheng, LIU Quan-sheng, XIA Cai-chu, et al. A new method for calculating roughness angle Δφ in Maksimovic peak shear strength criterion of rock joints[J]. Rock and Soil Mechanics, 2014, 35(2): 551−555.
[18]   唐志成, 刘泉声, 夏才初. 节理三维形貌参数的采样效应与峰值抗剪强度准则[J]. 中南大学学报: 自然科学版, 2015, 46(7): 2524−2531.
TANG Zhi-cheng, LIU Quan-sheng, XIA Cai-chu. Investigation of three-dimensional roughness scale-dependency and peak shear strength criterion[J]. Journal of Central South University: Science and Technology, 2015, 46(7): 2524−2531.
[19]   唐志成, 夏才初, 宋英龙, 等. Grasselli节理峰值抗剪强度公式再探[J]. 岩石力学与工程学报, 2012, 31(2): 356−364.
TANG Zhi-cheng, XIA Cai-chu, SONG Ying-long, et al. Discussion about Grasselli's peak shear strength criterion for rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 356−364.
[20]   XIA C C, TANG Z C, XIAO W M, et al New peak shear strength criterion of rock joints based on quantified surface description[J]. Rock Mechanics and Rock Engineering, 2014, 47 (2): 387- 400
doi: 10.1007/s00603-013-0395-6
[21]   YANG J, RONG G, HOU D, et al Experimental study on peak shear strength criterion for rock joints[J]. Rock Mechanics and Rock Engineering, 2016, 49 (3): 821- 835
doi: 10.1007/s00603-015-0791-1
[22]   SINGH H K, BASU A Evaluation of existing criteria in estimating shear strength of natural rock discontinuities[J]. Engineering Geology, 2018, 232: 171- 181
doi: 10.1016/j.enggeo.2017.11.023
[23]   葛云峰, 唐辉明, 王亮清, 等 天然岩体结构面粗糙度各向异性、尺寸效应、间距效应研究[J]. 岩土工程学报, 2016, 38 (1): 170- 179
GE Yun-feng, TANG Hui-ming, WANG Liang-qing, et al Anisotropy, scale and interval effects of natural rock discontinuity surface roughness[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (1): 170- 179
doi: 10.11779/CJGE201601019
[24]   TATONE B S, GRASSELLI G. A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials[J]. Review of Scientific Instruments, 2009, 80(12): 125110.
[25]   班力壬, 戚承志, 单仁亮, 等 一种新的表征岩石节理粗糙度指标系统[J]. 煤炭学报, 2018, 43 (12): 3356-3363
BAN Li-ren, QI Cheng-zhi, SHAN Ren-liang, et al A new 3D roughness parameter system for rock joint[J]. Journal of China Coal Society, 2018, 43 (12): 3356-3363
[26]   BAN L, DU W, QI C A peak dilation angle model considering the real contact area for rock joints[J]. Rock Mechanics and Rock Engineering, 2020, 53: 4909- 4923
doi: 10.1007/s00603-020-02193-1
[27]   班力壬, 戚承志, 李晓照, 等. 考虑真实接触微凸体的岩石节理三维粗糙度指标. 煤炭学报, 2020, 45(12): 4052-4061.
BAN Li-ren, QI Cheng-zhi, LI Xiao-zhao, et al. A 3D quantified surface description for rock joint based on the real contact asperities[J]. Journal of China Coal Society, 2020, 45(12): 4052-4061.
[28]   LIU Q, TIAN Y, LIU D, et al. Updates to JRC-JCS model for estimating the peak shear strength of rock joints based on quantified surface description[J]. Engineering Geology, 2017, 228: 282−300.
[1] Fa-sheng MIAO,Yi-ping WU,Lin-wei LI,Kang LIAO,Yang XUE. Prediction of joint roughness coefficient of rock mass based on Boosting-decision tree C5.0[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 483-490.