|
|
Hydraulic fracturing modeling of quasi-brittle materials based on pore pressure cohesive interface elements |
Ke-lai YU1( ),Zhen-jun YANG2,*( ),Xin ZHANG1,Guo-hua LIU1,Hui LI2 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Hubei Key Laboratory of Geotechnical and Structural Safety, School of Civil Engineering, Wuhan University, Wuhan 430072, China |
|
|
Abstract In traditional numerical methods, pre-defined crack paths are often assumed and flow effects of fluids are often simplified as equivalent pressure loads on the crack when modelling hydraulic fracture, which makes it difficult to reflect the coupling effects of seepage and fracture. In this study, a highly efficient Python code was developed to insert pore pressure cohesive interface elements into the solid finite element mesh, and the coupling mechanism of seepage-fracture was considered to model the complicated hydraulic fracture process in quasi-brittle materials. The effectiveness of the model was validated by the simulations of the classic theoretical model and experimental results. Furthermore, the whole process of hydraulic fracture with multiple pre-existing cracks was simulated, the meso-scale hydraulic fracture model of concrete was established, and the influences of aggregates, interface transition zone and permeability of matrix were analyzed. Results show that the developed model can reliably simulate complicated hydraulic fracture problems of quasi-brittle materials, the multi-crack propagation is accompanied by the bifurcation propagation of micro cracks rather than smooth crack propagation trajectory. The aggregates and interface transition zone affect the fracture trajectory, and the bifurcation of crack is generated. The permeability of concrete matrix affects its resistance of hydraulic fracture and failure softening process.
|
Received: 28 December 2020
Published: 05 November 2021
|
|
Fund: 国家自然科学基金资助项目(51974202,51779222,51979244) |
Corresponding Authors:
Zhen-jun YANG
E-mail: yukl1993@126.com;zhjyang@whu.edu.cn
|
基于孔隙压力黏结单元的准脆性材料水力劈裂模拟
传统数值方法对水力劈裂的模拟一般采用预设裂缝扩展路径,且将水流作用等效为压力荷载,难以反映裂缝渗流-开裂耦合效应. 采用自编程Python脚本程序批量插入孔隙压力黏结单元,考虑裂缝渗流-开裂耦合作用模拟准脆性材料水力劈裂随机扩展全过程. 在对经典理论模型及试验结果模拟验证的基础上,开展含多裂缝均质模型的水力劈裂全过程分析,并进一步建立混凝土细观尺度水力劈裂模型,分析骨料、界面过渡区和基体渗透性对混凝土劈裂全过程的影响. 结果表明,本研究模型可以有效模拟准脆性材料水力劈裂失效过程,准脆性材料多缝开裂过程伴随微裂缝的分叉扩展而非光滑的裂缝扩展路径,骨料及界面过渡区影响劈裂扩展路径造成裂缝分叉出现,混凝土基体的渗透性对其抵抗水力劈裂不利并影响失效软化过程.
关键词:
混凝土,
水力劈裂,
流固耦合,
黏结单元,
孔隙压力,
Python脚本程序,
ABAQUS
|
|
[1] |
JIA J S, LI X, ZHENG C Y Studies on safety problem of high gravity dams higher than 200 m with consideration of hydraulic fracturing under water pressure[J]. Journal of Hydraulic Engineering, 2006, 37 (12): 1509- 1515
|
|
|
[2] |
BRUHWILER E, SAOUMA V E Water fracture interaction in concrete. part I: fracture properties[J]. Aci Materials Journal, 1995, 92 (3): 296- 303
|
|
|
[3] |
BRUHWILER E, SAOUMA V E Water fracture interaction in concrete. Part II: hydrostatic pressure in crack[J]. Aci Materials Journal, 1995, 92 (4): 383- 390
|
|
|
[4] |
SLOWIK V, SAOUMA V E Water pressure in propagating concrete cracks[J]. Journal of Structural Engineering, 2000, 126 (2): 235- 242
doi: 10.1061/(ASCE)0733-9445(2000)126:2(235)
|
|
|
[5] |
徐世烺, 王建敏 静水压力下混凝土双K断裂参数试验测定[J]. 水利学报, 2007, 38 (7): 792- 798 XU Shi-lang, WANG Jian-min Experimental determination of double-K fracture parameters of concrete under water pressure[J]. ShuiLi XueBao, 2007, 38 (7): 792- 798
doi: 10.3321/j.issn:0559-9350.2007.07.005
|
|
|
[6] |
杜成斌, 陈小翠, 陈玉泉, 等 混凝土水力劈裂试验研究[J]. 水利学报, 2017, 48 (9): 1047- 1054 DU Cheng-bin, CHEN Xiao-cui, CHEN Yu-quan, et al Experimental research on hydraulic fracture of concrete[J]. ShuiLi XueBao, 2017, 48 (9): 1047- 1054
|
|
|
[7] |
甘磊, 沈心哲, 王瑞, 等 单裂缝混凝土结构水力劈裂试验[J]. 水利水电科技进展, 2017, 37 (4): 30- 35 GAN Lei, SHEN Xin-zhe, WANG Rui, et al Hydraulic fracturing test of concrete structures with single crack[J]. Advances in Science and Technology of Water Resources, 2017, 37 (4): 30- 35
doi: 10.3880/j.issn.1006-7647.2017.04.006
|
|
|
[8] |
甘磊, 沈振中, 张腾, 等 混凝土结构水力劈裂试验装置研究及应用[J]. 水利与建筑工程学报, 2015, 13 (4): 130- 136 GAN Lei, SHEN Zhen-zhong, ZHANG Teng, et al Research and application of a hydraulic fracturing test device for concrete structures[J]. Journal of Water Resources and Architectural Engineering, 2015, 13 (4): 130- 136
doi: 10.3969/j.issn.1672-1144.2015.04.026
|
|
|
[9] |
REN Q W, DONG Y W, YU T T Numerical modeling of concrete hydraulic fracturing with extended finite element method[J]. Science in China Series E, 2009, 52 (3): 559- 565
doi: 10.1007/s11431-009-0058-8
|
|
|
[10] |
GORDELIY E, PEIRCE A Coupling schemes for modeling hydraulic fracture propagation using the XFEM.[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 305- 322
doi: 10.1016/j.cma.2012.08.017
|
|
|
[11] |
FANG X J, JIN F Coupling model for interaction between fissure water and cracking in concrete[J]. Journal of Hydraulic Engineering, 2007, 38 (12): 1466- 1474
|
|
|
[12] |
WANG K F, ZHANG Q, XIA X Z Modeling of hydraulic fracturing for concrete gravity dams under fluid structure interaction[J]. Applied Mathematics and Mechanics, 2015, 36 (9): 970- 980
|
|
|
[13] |
SHENG M, LI G S Extended finite element modeling of hydraulic fracture propagation[J]. Engineering Mechanics, 2014, 31 (10): 123- 128
|
|
|
[14] |
GUO J C, ZHAO X, ZHU H Y, et al Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 180- 188
doi: 10.1016/j.jngse.2015.05.008
|
|
|
[15] |
GUO J C, LUO B, LAI J, et al Numerical investigation of hydraulic fracture propagation in a layered reservoir using the cohesive zone method[J]. Engineering Fracture Mechanics, 2017, 186: 195- 207
doi: 10.1016/j.engfracmech.2017.10.013
|
|
|
[16] |
SEGURA J M, CAROL I Numerical modeling of pressurized fracture evolution in concrete using zero-thickness interface elements[J]. Engineering Fracture Mechanics, 2010, 77 (9): 1386- 1399
doi: 10.1016/j.engfracmech.2010.03.014
|
|
|
[17] |
YAO F, YANG Z J, HU Y J An SBFEM-based model for hydraulic fracturing in quasi-brittle materials[J]. Acta Mechanica Solida Sinica, 2018, 31 (4): 416- 432
doi: 10.1007/s10338-018-0029-3
|
|
|
[18] |
SU X T, YANG Z J, CHEN J F, et al Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials[J]. International Journal of Solids and Structures, 2009, 46 (17): 3222- 3234
doi: 10.1016/j.ijsolstr.2009.04.013
|
|
|
[19] |
SU X T, YANG Z J, LIU G H Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3D study[J]. International Journal of Solids and Structures, 2010, 47 (17): 2336- 2345
doi: 10.1016/j.ijsolstr.2010.04.031
|
|
|
[20] |
SU X T, YANG Z J, LIU G H Finite element modelling of complex 3D static and dynamic crack propagation by embedding cohesive elements in Abaqus[J]. Acta Mechanica Solida Sinica, 2010, 23 (3): 271- 282
doi: 10.1016/S0894-9166(10)60030-4
|
|
|
[21] |
LI Y, LIU W, DENG J, et al A 2D explicit numerical scheme–based pore pressure cohesive zone model for simulating hydraulic fracture propagation in naturally fractured formation[J]. Energy Science and Engineering, 2019, 7 (1): 1527- 1543
|
|
|
[22] |
VINH P N, HAOJIE L, TIMON R, et al Modelling hydraulic fractures in porous media using flow cohesive interface elements[J]. Engineering Geology, 2017, 225: 68- 82
doi: 10.1016/j.enggeo.2017.04.010
|
|
|
[23] |
ECONOMIDES M J, NOLTE K G. Reservoir stimulation [M]. Old Tappan: Wiley Chichester, 2000.
|
|
|
[24] |
PEIRCE A, DETOURNAY E An implicit level set method for modeling hydraulically driven fractures[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197 (33): 2858- 2885
|
|
|
[25] |
BARANI O R, MAJIDAIE S, MOSALLANEJAD M Numerical modeling of water pressure in propagating concrete cracks[J]. Journal of Engineering Mechanics, 2016, 142 (4): 04016011
doi: 10.1061/(ASCE)EM.1943-7889.0001048
|
|
|
[26] |
ZIENKIEWICZ O C, CHAN A H C, PASTOR M, et al. Computational geomechanics with special reference to earthquake engineering [M]. New York: Wiley, 1999.
|
|
|
[27] |
GEERTSMA, J, HAAFKENS R A comparison of the theories for predicting width and extent of vertical hydraulically induced fractures[J]. Journal of Energy Resources Technology, 1979, 101 (1): 8- 19
doi: 10.1115/1.3446866
|
|
|
[28] |
LIU C, SHEN Z Z, GAN L, et al A hybrid finite volume and extended finite element method for hydraulic fracturing with cohesive crack propagation in quasi-brittle materials[J]. Materials, 2018, 11: 1921- 1932
doi: 10.3390/ma11101921
|
|
|
[29] |
SHI F, WANG X, LIU C, et al An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures[J]. Engineering Fracture Mechanics, 2017, 173: 64- 90
doi: 10.1016/j.engfracmech.2017.01.025
|
|
|
[30] |
REN W, YANG Z J, SHARMA R, et al Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete[J]. Engineering Fracture Mechanics, 2015, 133: 24- 39
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|