Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1436-1443    DOI: 10.3785/j.issn.1008-973X.2021.08.004
    
Carbonation resistance zonation of reinforced concrete lining of road tunnels
Xing-bo HAN(),Fei YE*(),Xiao-ming LIANG,Hao-lan FENG,Lei WANG,Yong-xu XIA
Chang’an University, School of Highway, Xi’an 710064, China
Download: HTML     PDF(2720KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The optimistic model was decided by comparing results from carbonation depth calculation models and tested data, in order to establish a quantitative method for the carbonization durability design of highway tunnel lining. The relationship of temperature and humidity between the tunnel operation environment and the atmosphere was analyzed based on the field test data. The temperature and humidity zonation of road tunnels in China was established based on the temperature and humidity data from meteorological stations. The calculation method of CO2 volume fraction in the tunnel operation environment was recommended by referring to the emission source of CO2 as well as the field test data. The carbonation durability of road tunnels in China was divided based on the principle of equalized carbonation degradation rate gradient. Also, the specific method of quantitative design of carbonation durability of road tunnel lining in China was recommended based on the results of the zonation. Results show that the environmental humidity of the tunnel is equivalent to the atmospheric humidity. The temperature trend of the tunnel environment is consistent with that of the atmospheric environment, and the average values of the two are close. The CO2 volume fraction in the road tunnel is linearly related to the CO volume fraction. The lining of tunnels built in the Yunnan and Guizhou are greatly affected by the environment. The impact of carbonation can be ignored for tunnels in Tibet, Qinghai, Inner Mongolia, Heilongjiang and Jilin. The carbonation durability design of the tunnel lining in other areas of the country can refer to the design of the classification “lightness” in “Standard for design of concrete structure durability”.



Key wordsroad tunnel      reinforced concrete lining      carbonation      operating environment      durability      zonation     
Received: 27 July 2020      Published: 01 September 2021
CLC:  U 451.4  
Fund:  国家自然科学基金资助项目(51878060);中国博士后科学基金面上资助项目(2020M683398);长安大学中央高校基本科研业务费专项资金资助项目(300102210124)
Corresponding Authors: Fei YE     E-mail: xingbo.han@chd.edu.cn;xianyefei@126.com
Cite this article:

Xing-bo HAN,Fei YE,Xiao-ming LIANG,Hao-lan FENG,Lei WANG,Yong-xu XIA. Carbonation resistance zonation of reinforced concrete lining of road tunnels. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1436-1443.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.004     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1436


公路隧道钢筋混凝土衬砌碳化耐久性区划

为了构建公路隧道衬砌碳化耐久性的定量设计方法,对比各碳化深度计算模型与实测数据,选定衬砌碳化的最优模型;根据实测数据分析隧道环境温湿度与洞外大气关系,基于全国气象监测站的温湿度数据,建立公路隧道运营环境温湿度区划;考虑公路隧道CO2的释放源项并参照实测数据,构建隧道运营环境CO2体积分数的计算方法;以碳化劣化速率梯度相等为原则,对我国隧道碳化环境进行分区,结合分区推荐我国公路隧道衬砌碳化耐久性定量设计的具体方法. 研究发现:隧道环境湿度与大气湿度相当,隧道环境温度变化趋势与大气环境一致,两者均值接近. 公路隧道内部CO2体积分数与CO体积分数呈线性关系. 云南、贵州区修建的隧道工程衬砌受环境影响较大,西藏、青海、内蒙古、黑龙江、吉林等地区的待建隧道在进行衬砌耐久性设计时可以忽略碳化影响,其余全国大面积区域隧道衬砌的碳化耐久性设计可以对应《混凝土结构耐久性设计标准》中环境作用等级中的“轻度”进行设计.


关键词: 公路隧道,  钢筋混凝土衬砌,  碳化,  运营环境,  耐久性,  区划 
Fig.1 Comparison of carbonation depth of theoretical model and fieldtest data
Fig.2 Regulations of environmental factors on carbonation depth
Fig.3 Inner and outer temperature of Wafangdian tunnel
Fig.4 Inner and outer temperature of Jiaozhou bay road tunnel
Fig.5 Inner and outer temperature of Zuomutai tunnel
Fig.6 Inner and outer humidity of Jiaozhou bay road tunnel
Fig.7 CO2 emission factors for each type of vehicle
Fig.8 Correlation analysis of density field test data of CO and CO2
碳化环境作用等级 隧道内部环境特征
与作用程度
主要分布行政区域
0 碳化寿命为120 a以上,100 a碳化深度为55 mm以下,可与级别A对应 内蒙古东北部、黑龙江北部、新疆吐鲁番、青海格尔木小部区域
1 碳化寿命为100~120 a,100 a碳化深度为55~60 mm,可与级别A对应 内蒙古北部、黑龙江、吉林、辽宁东部、西藏、青海、四川北部
2 碳化寿命为80~100 a,100 a碳化深度为60~67 mm,可与级别B对应 内蒙古西部、甘肃、宁夏、陕西、山西、辽宁西部、新疆、湖南、安徽、江苏、浙江、重庆、江西、福建、西藏南部
3 碳化寿命为60~80 a,100 a碳化深度为67~77 mm,可与级别B对应 新疆西部及中部、河南北部、河北南部、北京、山东中西部、四川、广西、广东、台湾、海南
4 碳化寿命为40~60 a,100 a碳化深度为77~95 mm,可与级别C对应 贵州南部、云南
5 碳化寿命为40 a以下,100 a碳化深度为95 mm以上,可与级别C对应 云南、贵州、四川交界部位
Tab.2 Environmental characteristics and extent of action of each durability grade
Fig.9 Relationship between carbonation life span and carbonation depth
级别 作用程度 级别 作用程度
A 可忽略 D 严重
B 轻度 E 非常严重
C 中度 F 极端严重
Tab.1 Grade of environmental action
[1]   董飞, 房倩, 张顶立, 等 北京地铁运营隧道病害状态分析[J]. 土木工程学报, 2017, 50 (6): 104- 113
DONG Fei, FANG Qian, ZHANG Ding-li, et al Analysis on defects of operational metro tunnels in Beijing[J]. China Civil Engineering Journal, 2017, 50 (6): 104- 113
[2]   王家滨, 许云喆, 张凯峰, 等 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34 (8): 8058- 8063
WANG Jia-bin, XU Yun-zhe, ZHANG Kai-feing, et al Neutralization performance and prediction model of lining shotcrete on alternation effects of nitric acid and carbonation[J]. Materials Review, 2020, 34 (8): 8058- 8063
[3]   中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准: GB/T 50476—2019 [S]. 北京: 中国建筑工业出版社. 2019.
[4]   余波, 成荻, 杨绿峰 混凝土结构的碳化环境作用量化与耐久性分析[J]. 土木工程学报, 2015, 48 (9): 51- 59
YU Bo, CHENG Di, YANG Lv-feng Quantification of environmental effect for carbonation and durability analysis of concrete structures[J]. China Civil Engineering Journal, 2015, 48 (9): 51- 59
[5]   宋晓冰, 刘西拉 结构耐久性设计的混凝土保护层厚度[J]. 工业建筑, 2001, 31 (10): 43- 46
SONG Xiao-bing, LIU Xi-la Concrete cover thickness in structural durability design[J]. Industrial Construction, 2001, 31 (10): 43- 46
doi: 10.3321/j.issn:1000-8993.2001.10.014
[6]   American Concrete Institute. Building code requirement for structure concrete and commentary: ACI 318M-05 [S]. Farmington Hills: ACI Committee 318, 2005.
[7]   MOSLEY B, BUNGER J, HULSE R. Reinforced concrete design to Eurocode 2[M]. London: Palgrave MacMillan, 2012.
[8]   European Committee for Standardization. Concrete-part 1: specification, performance, production, and conformity: EN 206 [S]. Brussels: CEN-CENELEC Management Centre, 2013.
[9]   The European Union. General guidelines for durability design and redesign: BE95-1347 [S]. Lyngby: Brite EuRam III, 2000.
[10]   Australia Standard TM. Concrete structures: AS 3600-2001 [S]. Sydney: Australia International Ltd GPO, 2001.
[11]   Canadian Standards Association. Concrete materials and methods of concrete construction: A. 23.1-94 [S]. Mississauga: Canadian Standards Association, 1994.
[12]   Deutsches Institut Für Normung. Structure use of concrete-design and construction: 1045/A1 [S]. Berlin: DIN Deutsches Institut für Normung, 2001.
[13]   Norsk Standard. Prosjektering, produksjon og vedlikehold av betongkonstruksjoner i et Resurs- og miljøperspektiv: 3473-92 [S]. Oslo: Tekna Postboks, 1992.
[14]   Swedish Building Centre. High performance concrete structures-design handbook[M]. Stockholm: Flanders Svenskt AB, 2000.
[15]   PAPADAKIS V G, VAYENAS C G, FARDIS M N Fundamental modeling and experimental investigation of concrete carbonation[J]. Materials Journal, 1991, 88 (4): 363- 373
[16]   JIANG C, GU X L Analysis of compressive strength development and carbonation depth of high-volume fly ash cement pastes[J]. ACI Materials Journal, 2017, 114 (1): 185- 186
[17]   WANG X Y, PARK K B Analysis of compressive strength development and carbonation depth of high-volume fly ash cement pastes[J]. Aci Materials Journal, 2016, 113 (2): 151- 161
[18]   WANG X H, VAL D V, ZHENG L, et al Carbonation of loaded RC elements made of different concrete types: accelerated testing and future predictions[J]. Construction and Building Materials, 2020, 243 (3): 1- 14
[19]   RAMESH B A, KONDRAIVENDHAN B Effect of accelerated carbonation on the performance of concrete containing natural zeolite[J]. Journal of Materials in Civil Engineering, 2020, 32 (4): 1- 10
[20]   MORANDEAU A, THIERY M, DANGLA P Field measurement of air temperature in a cold region tunnel in northeast China[J]. Cement and Concrete Research, 2015, 67 (3): 226- 236
[21]   DAS B B, PANDEY S P Influence of fineness of fly ash on the carbonation and electrical conductivity of concrete[J]. Journal of Materials in Civil Engineering, 2011, 23 (9): 1365- 1368
doi: 10.1061/(ASCE)MT.1943-5533.0000298
[22]   YOUNSI A, TURCRY P, AIT-MOKHTAR A, et al Accelerated carbonation of concrete with high content of mineral additions: effect of interactions between hydration and drying[J]. Cement and Concrete Research, 2013, 43 (1): 25- 33
[23]   QI B, GAO J M, MA L B Durability of high-volume fly ash concrete subjected to drying-wetting cycles and carbonation coupling effects[J]. Materials Research Innovations, 2015, 19 (Suppl.5): 1272- 1275
[24]   ZHANG L Y, SUN L M Effect of concrete carbonation on natural frequency of reinforced concrete beams[J]. Advances in Structural Engineering, 2017, 20 (3): 316- 330
doi: 10.1177/1369433216649728
[25]   HAN S H, PARK W S, YANG E I Evaluation of concrete durability due to carbonation in harbor concrete structures[J]. Construction and Building Materials, 2013, 48 (11): 1045- 1049
[26]   CHEN C T, HO C W Influence of cyclic humidity on carbonation of concrete[J]. Journal of Materials in Civil Engineering, 2013, 25 (12): 1929- 1935
doi: 10.1061/(ASCE)MT.1943-5533.0000750
[27]   VISSER J H M Influence of the carbon dioxide concentration on the resistance to carbonation of concrete[J]. Construction and Building Materials, 2014, 67 (9): 8- 13
[28]   SEIGNEUR N, KANGNI-FOLI E, LAGNEAU V, et al Predicting the atmospheric carbonation of cementitious materials using fully coupled two-phase reactive transport modelling[J]. Cement and Concrete Research, 2020, 130 (4): 1- 14
[29]   CASTEL A, FRANCOIS R, ARLIGUIE G Effect of loading on carbonation penetration in reinforced concrete elements[J]. Cement and Concrete Research, 1999, 29 (4): 561- 565
doi: 10.1016/S0008-8846(99)00017-4
[30]   JIANG C, GU X L, ZHANG W P, et al Modeling of carbonation in tensile zone of plain concrete beams damaged by cyclic loading[J]. Construction and Building Materials, 2015, 77 (2): 479- 488
[31]   牛荻涛. 混凝土结构耐久性与寿命预测[M]. 北京: 科学出版社, 2003.
[32]   万小梅. 力学荷载及环境复合因素作用下混凝土结构劣化机理研究[D]. 西安: 西安建筑科技大学, 2011.
WAN Xiao-mei. Deterioration mechanisms of reinforced concrete structures under combined mechanical and environmental action[D]. Xi’an: Xi’an University of Architecture and Technology, 2011.
[33]   武海荣, 金伟良, 吕清芳, 等 基于可靠度的混凝土结构耐久性环境区划[J]. 浙江大学学报: 工学版, 2012, 46 (3): 416- 423
WU Hai-rong, JIN Wei-liang, LV Qing-fang, et al Reliability-based zonation of environmental area according to its effect on durability of concrete structures[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (3): 416- 423
doi: 10.3785/j.issn.1008-973X.2012.03.006
[34]   陈建勋, 罗彦斌 寒冷地区隧道温度场的变化规律[J]. 交通运输工程学报, 2008, 8 (2): 44- 48
CHEN Jian-xun, LUO Yan-bin Changing rules of temperature field for tunnel in cold area[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (2): 44- 48
doi: 10.3321/j.issn:1671-1637.2008.02.010
[35]   丁浩, 刘瑞全, 胡居义, 等 姜路岭隧道温度场特性分析[J]. 现代隧道技术, 2015, 52 (1): 76- 81
DING Hao, LIU Rui-quan, HU Ju-yi, et al Analysis of temperature field characteristics in the Jiangluling tunnel[J]. Modern Tunnelling Technology, 2015, 52 (1): 76- 81
[36]   ZHAO P Y, CHEN J X, LUO Y B, et al Field measurement of air temperature in a cold region tunnel in northeast China[J]. Cold Regions Science and Technology, 2020, 171 (3): 1- 10
[37]   中华人民共和国交通运输部. 公路隧道通风设计细则[S]. 北京: 人民交通出版社. 2014.
[38]   JIN W L, LV Q F Study on durability zonation standard of concrete structural design[J]. Journal of Southeast University: English Edition, 2007, 23 (1): 98- 104
[39]   王艳. 混凝土结构耐久性环境区划研究[D]. 西安: 西安建筑科技大学, 2007.
WANG Yan. Durability environment division for concrete structure[D]. Xi’an: Xi’an University of Architecture and Technology, 2007.
[40]   HUANG Q H, XU N, GU X L. Environmental zonation for durability assessment and design of reinforced concrete structures in China[C]// Proceeding of the First International Conference on Microstructure Related Durability of Cementitious Composites. Nanjing:[s.n.], 2008: 735-743.
[41]   贾辉. 气象要素对寒区隧道温度场影响及纵向分区研究[D]. 成都: 西南交通大学, 2016.
JIA Hui. Study on the influence of meteorological elements on the temperature field of tunnel in cold region and longitudinal zoning[D]. Chengdu: Southwest Jiaotong University, 2016.
[42]   HE X, LI A, NING Y Optimization of outdoor design temperature for summer ventilation for undersea road tunnel using field measurement and statistics[J]. Building and Environment, 2020, 167: 106457
doi: 10.1016/j.buildenv.2019.106457
[43]   顾祥林, 徐宁, 黄庆华, 等 混凝土结构时间多尺度环境作用研究[J]. 同济大学学报: 自然科学版, 2012, 40 (1): 1- 7
GU Xiang-lin, XU Ning, HUANG Qing-hua, et al Temporal multi-scale environmental actions for concrete structures[J]. Journal of Tongji University: Natural Science, 2012, 40 (1): 1- 7
[44]   王秀英, 刘维宁, 张弥 秦岭隧道内温湿度对作业人员的影响研究[J]. 北方交通大学学报, 1999, 23 (4): 71- 75
WANG Xiu-ying, LIU Wei-ning, ZHANG Mi Investigation about the effects of temperature and humidity on personnel in Qinling railway tunnel[J]. Journal of Beijing Jiaotong University, 1999, 23 (4): 71- 75
[45]   张少君. 中国典型城市机动车排放特征与控制策略研究[D]. 北京: 清华大学, 2014.
ZHANG Shao-jun. Characteristics and control strategies of vehicle emissions in typical cities of China[D]. Beijing: Tsinghua University, 2014.
[46]   HUANG L, JAKOBSEN P D, BOHNE R A, et al The environmental impact of rock support for road tunnels: the experience of Norway[J]. Science of the Total Environment, 2020, 712 (4): 1- 13
[47]   GAO C K, BA Q, SONG K H, et al On-road vehicle emission inventory and its characteristics analysis in northeast china: a case study of Changchun, China[J]. Journal of Environmental Accounting and Management, 2020, 8 (2): 179- 200
doi: 10.5890/JEAM.2020.06.006
[48]   刘洋. 西安城市公路隧道空气污染物浓度分布及通风方式研究[D]. 西安: 西安工程大学, 2018.
LIU Yang. Research on air pollutant concentration distribution and ventilation mode in Xi’an urban highway tunnel[D]. Xi’an: Xi’an Polytechnic University, 2018.
[1] Xin SONG,Wei-jie FAN,Jiang-hong MAO,Wei-liang JIN. Dynamic control effect of chloride in concrete based on multi-level electromigration[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 511-518.
[2] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO. Life prediction of coated steel with individual difference in magnesium oxychloride cement concrete[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2309-2316.
[3] Fei-bin YUAN,Wei-liang JIN,Jiang-hong MAO,Jin-quan WANG,Wei-jie FAN,Jin XIA. Effect of chloride removal and corrosion prevention for cracked concrete based on bi-directional electro-migration rehabilitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2317-2324.
[4] DENG Feng-xia, QIU Shan, YUE Xiu-li, XU Shan-wen, CHEN Cong. Advanced treatment of refinery wastewater by heterogeneous catalytic ozonation oxidation[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 555-563.
[5] WU Hai-rong, JIN Wei-liang, YAN Yong-dong, XIA Jin. Environmental zonation and life prediction of concrete in
frost environments
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 650-657.
[6] WU Hai-rong, JIN Wei-liang, LV Qing-fang, WANG Hai-long. Reliability-based zonation of environmental area according to
its effect on durability of concrete structures
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 416-423.
[7] JIN Li-Bing, JIN Wei-Liang, WANG Hai-Long, JIA Jin. Multienvironmental time similarity theory and its application[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 789-797.
[8] XUE Feng-Fei, XIANG Yi-Jiang. Corrected diffusion model of chloride in concrete and
its engineering application
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 831-.