Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1464-1472    DOI: 10.3785/j.issn.1008-973X.2021.08.007
    
Experimental study on seismic performance of joints connecting concrete-filled steel tube columns and hybrid beams
Shuai-ke FENG1(),Zheng-xing GUO1,*(),Lu-yao NI1,Guo-jian LI2,Chang-yi GONG2,Chao XIE2,Jian-zheng MAN2
1. School of Civil Engineering, Southeast University, Nanjing 211189, China
2. Zhongyifeng Construction Group Co. Ltd, Suzhou 215131, China
Download: HTML     PDF(1519KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel joint was proposed for connecting hybrid load beams and concrete-filled steel tube columns for long-span prefabricated structures. Cyclic reciprocating tests were conducted on two full-scale interior joint specimens to investigate the seismic performance and mechanical performance of the proposed joint. Two joint specimens were designed with different types of hybrid steel-concrete beams, i.e., reduced beam section (RBS) and untreated H-steels were respectively used at the beam ends. The seismic performance of the joints was analyzed comprehensively based on the failure pattern, dissipated energy, bearing capacity, ductility and strain distribution along the precast hybrid beams. Test results showed that the specimen with RBS region can promote plastic hinge formation in the region, and avoid the brittle fracture of beam end welds. In contrast, the proposed joint with RBS region exhibited better ductility and energy dissipation capability than the joint with untreated steel beam. The energy dissipation of the specimens was affected significantly by the bond slip after the anchoring bars entered the yield stage. Therefore, When the anchorage length of the bars satisfies the design recommendations, a sufficient reinforcement ratio of the bars should be ensured to prevent the emergence of the anchorage bar bond slippage after the bars yielded.



Key wordshybrid beam      concrete-filled steel tube column      reduced beam section (RBS) joint      seismic performance      plastic hinge     
Received: 07 August 2020      Published: 01 September 2021
CLC:  TU 375  
Fund:  国家“十三五”重点研发计划资助项目(2016YFC0701703)
Corresponding Authors: Zheng-xing GUO     E-mail: fsk@seu.edu.cn;guozx195608@126.com
Cite this article:

Shuai-ke FENG,Zheng-xing GUO,Lu-yao NI,Guo-jian LI,Chang-yi GONG,Chao XIE,Jian-zheng MAN. Experimental study on seismic performance of joints connecting concrete-filled steel tube columns and hybrid beams. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1464-1472.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.007     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1464


钢管混凝土柱-混合梁节点抗震性能试验研究

提出适用于装配式大跨度组合框架结构的钢管混凝土柱-混合梁节点. 为了研究节点的抗震性能及受力机理,对2个足尺中柱节点试件进行低周往复加载试验. 2个试件分别采用混合梁端型钢翼缘削弱式(RBS)节点以及梁端普通型钢节点. 对2个节点的破坏形态、耗能能力、承载能力、延性以及混合梁的应变分布规律进行对比分析. 试验结果表明,对梁端型钢翼缘的削弱处理可以有效促进试件在翼缘削弱区形成塑性铰,避免梁端焊缝的脆性破坏. 相比型钢未经处理的节点,翼缘削弱节点展现出更好的延性和耗能能力;梁底附加钢筋屈服后的黏结滑移会影响节点的耗能能力,在锚固长度满足规范要求的前提下,应适当增加其配筋率,以防止过早出现附加钢筋屈服后的黏结滑移.


关键词: 混合梁,  钢管混凝土柱,  翼缘削弱式(RBS)节点,  抗震性能,  塑性铰 
Fig.1 Schematic diagram of hybrid steel-precast concrete beam
Fig.2 Detail of joint between concrete-filled steel tube column and hybrid beam
Fig.3 Detail of reduced beam sections region
Fig.4 Relationship of bending moment in beam
Fig.5 Dimension and reinforcement details of specimens
试件编号 Mc/(kN·m) Mb/(kN·m) Mbt/(kN·m) Mbr/(kN·m) $ M_{{\rm{bt}}}^{\rm{t}} $/(kN·m) $ M_{{\rm{br}}}^{\rm{t}} $/(kN·m) Mbt/ $M_{{\rm{bt}}}^{\rm{t}}$ Mbr/ $M_{{\rm{br}}}^{\rm{t}}$ k
IJ-1 885.1 514.3 ? 415.9 ? 347.5 ? 1.2 1.7
IJ-2 885.1 514.3 323.5 415.9 460.0 291.9 0.7 1.4 2.7
Tab.1 Theoretical values of flexural capacity
钢材类型 (t/d) /mm fy/(N·mm?2) fu/(N·mm?2) Es/GPa εy/10?6
钢管 12.2 300.6 403.8 203 1481
H型钢翼缘 12.0 298.7 413.6 203 1471
H型钢腹板 8.1 312.6 430.2 202 1548
钢筋 22.0 448.0 615.0 200 2240
钢筋 20.0 458.0 627.0 201 2279
Tab.2 Material properties of steel and reinforcements
Fig.6 Test setup of test specimens
Fig.7 Arrangement of strain measurement points
Fig.8 Crack patterns and failure modes for specimens
Fig.9 Load-displacement hysteretic loops and skeleton curves
Fig.10 Rigidity degradation of specimens
试件 加载方向 Py/kN Δy/mm Pu/kN P0.85/kN Δu/mm μ $\bar \mu$
IJ-1 正向 254.1 27.2 306.9 276.2 57.2 2.1 2.1
负向 ?261.9 ?28.1 ?303.4 ?257.8 ?58.6 2.1
IJ-2 正向 246.6 29.0 302.3 296.8 123.6 4.3 4.2
负向 ?234.6 ?29.1 ?292.6 ?248.7 ?119.8 4.1
Tab.3 Primary performance indexes of specimens
Fig.11 Strain development at steel tube end of column
Fig.12 Strain distribution at longitudinal bars and H-steel flanges of beam
Fig.13 Comparison of energy dissipation capacity of specimens
[1]   HAN L H, AN Y F Performance of concrete encased CFST stub columns under axial compression[J]. Journal of Constructional Steel Research, 2014, 93 (2): 62- 76
[2]   HAN L H, LIAO F Y, TAO Z, et al Performance of concrete filled steel tube reinforced concrete columns subjected to cyclic bending[J]. Journal of Constructional Steel Research, 2009, 65 (8/9): 1607- 1616
[3]   QIN Y, CHEN Z, WANG X Elastoplastic behavior of through-diaphragm connections to concrete-filled rectangular steel tubular columns[J]. Journal of Constructional Steel Research, 2014, 93: 88- 96
doi: 10.1016/j.jcsr.2013.10.011
[4]   RICLES J M, PENG S W, LU L W Seismic behavior of composite concrete filled steel tube column-wide flange beam moment connections[J]. Journal of Structural Engineering, 2014, 130 (2): 223- 232
[5]   MOURAD S, KOROL R M, GHOBARAH A Design of extended end-plate connections for hollow section columns[J]. Canadian Journal of Civil Engineering, 1996, 23 (1): 277- 286
doi: 10.1139/l96-029
[6]   KIM O J, MOON J H, LEE L H Shear strength of RS hybrid steel beam with reinforced concrete ends[J]. Journal of Architectural Institute in Korea, 2001, 17 (5): 27- 34
[7]   YANG K H, OH M H, KIM M H, et al Flexural behavior of hybrid precast concrete beams with H-steel beams at both ends[J]. Engineering Structures, 2010, 32 (9): 2940- 9
doi: 10.1016/j.engstruct.2010.05.013
[8]   YANG K H, SEO E A, HONG S H Cyclic flexural tests of hybrid steel: precast concrete beams with simple connection elements[J]. Engineering Structures, 2016, 118: 344- 356
doi: 10.1016/j.engstruct.2016.03.045
[9]   郭小农, 高舒羽, 裴进玉, 等 预制混凝土梁端预埋槽钢节点静力性能试验[J]. 同济大学学报: 自然科学版, 2017, 45 (9): 1258- 1264
GUO Xiao-nong, GAO Shu-yu, PEI Jin-yu, et al Experimental study on static performance of embedded channel joints of precast concrete beams[J]. Journal of Tongji University: Natural Science, 2017, 45 (9): 1258- 1264
doi: 10.11908/j.issn.0253-374x.2017.09.002
[10]   张锡治, 章少华, 牛四欣, 等 钢-混凝土预制混合梁受力性能分析[J]. 建筑结构学报, 2019, 40 (4): 47- 55
ZHANG Xi-zhi, ZHANG Shao-hua, NIU Si-xin, et al Analysis on mechanical performance of precast hybrid steel-concrete beam[J]. Journal of Building Structures, 2019, 40 (4): 47- 55
[11]   HAN L H, LI W Seismic performance of CFST column to steel beam joint with RC slab: experiments[J]. Journal of Constructional Steel Research, 2010, 66 (11): 1374- 1386
doi: 10.1016/j.jcsr.2010.05.003
[12]   Federal Emergency Management Agency. Recommended seismic design criteria for new steel moment-frame buildings: FEMA—350[S]. Washington D C: SAC Joint Venture, 2000.
[13]   中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010 [S]. 北京: 中国建筑工业出版社, 2017.
[14]   中华人民共和国国家质量监督检验检疫总局. 金属材料拉伸试验: 第1部分: 室温试验方法: GB/T 228.1 [S]. 北京: 中国标准出版社, 2010.
[15]   聂建国, 王宇航, 陶慕轩, 等 钢管混凝土叠合柱-钢筋混凝土梁外加强环节点抗震性能试验研究[J]. 建筑结构学报, 2012, 33 (7): 88- 97
NIE Jian-guo, WANG Yu-hang, TAO Mu-xuan, et al Experimental study on seismic behavior of laminated steel tube column-concrete beam joint with outer stiffening ring[J]. Journal of Building Structures, 2012, 33 (7): 88- 97
[16]   LU C, DONG B Q, PAN J L, et al An investigation on the behavior of a new connection for precast structures under reverse cyclic loading[J]. Engineering Structures, 2018, 169: 131- 140
doi: 10.1016/j.engstruct.2018.05.041
[1] Tong LI,Xin-wu WANG,Qiang SHI,xin BU,Hai-su SUN. Seismic performance of replaceable eccentrically braced steel frame[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1725-1733.
[2] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[3] YIN Shi-ping, LI Yao,YANG Yang, YE Tao. Influencing factors of seismic performance of RC columns strengthened with textile reinforced concrete[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 904-913.
[4] HAN Dong, BU Xin, WANG Xin wu, JIANG Cang ru. Experiment on seismic performance of spatial beam to corner column connection with T-stub[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 287-296.
[5] LI Ying-min, YANG Long, LIU Shuo-yu, LUO Wen-wen. Method of failure mode evaluation of structure based on seismic resilience index[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2197-2206.
[6] YU Zhi-wu, PENG Xiao-dan,GUO Wei, PENG Miao-pei. Seismic performance of precast concrete shear wall with U-type reinforcements ferrule connection[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 975-984.
[7] YIN Ping, WANG Tong, XIE Xu. Seismic response of rigid frame bridge subjected to near-fault ground motion with effect of axial force variation of pier[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1896-1903.