Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1473-1481    DOI: 10.3785/j.issn.1008-973X.2021.08.008
    
Ship motion responses in cross wave and related safe navigation strategy
Song-xing HUANG(),Jia-long JIAO*(),Chao-he CHEN
School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
Download: HTML     PDF(2670KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A cross wave simulation method by computational fluid dynamics (CFD) method and volumn of fluid (VOF) wave-making technique was established to study the difference of ship motion responses in multi-directional and uni-directional waves. The momentum source method and wave forcing were used to superimpose waves to simulate cross wave. The motion behavior of a S175 ship in cross waves with different wave parameters was studied using overset mesh technique and dynamic fluid body interaction (DFBI) module. The ship motion responses in bi- and uni-directional waves were comparatively analyzed and the motion characteristics of ships on different navigational routes in a cross wave field were analyzed. Results indicate that the motion responses and green water on deck in bi-directional waves are generally much greater than those in uni-directional waves. And, the ship has obvious roll motion in cross waves. However, ship motions and green water on deck can be largely reduced by adopting the reasonably optimized navigational route and strategy, which would improve the navigation safety of the ship in cross waves and provide suggestions for the sailing safety when the ship encounters cross waves.



Key wordscross wave      seakeeping      large-amplitude motions      green water on deck      computational fluid dynamics (CFD)     
Received: 29 July 2020      Published: 01 September 2021
CLC:  U 661.1  
Fund:  国家自然科学基金资助项目(51909096);中央军委装备发展部“十三五”装备预研领域基金资助项目(61402070106);广东省基础与应用基础研究基金资助项目(2020A1515011181)
Corresponding Authors: Jia-long JIAO     E-mail: 201820107670@mail.scut.edu.cn;jiaojl@scut.edu.cn
Cite this article:

Song-xing HUANG,Jia-long JIAO,Chao-he CHEN. Ship motion responses in cross wave and related safe navigation strategy. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1473-1481.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.008     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1473


方形波浪中船舶运动特性及安全航行策略

为了研究船舶在多向波与单向波中运动响应的差异性,基于计算流体动力学(CFD)方法和流体体积法(VOF)造波技术建立方形波浪的数值模拟方法. 采用动量源方法和强迫波力进行波浪叠加模拟方形波浪,采用重叠网格技术和动态流体物体相互作用(DFBI)模块研究S175船型在不同参数方形波浪中的运动响应,并将船舶在双向波浪和单向波浪中的运动响应进行对比分析,探究船舶在方形波浪场中不同航线下的运动特性. 研究表明,在大部分工况下,方形波浪中的船舶运动响应及甲板上浪较单向波浪中的大幅增加,其中船舶在方形波浪中出现明显的横摇运动,但合理选择航行路线可以使得船体运动及甲板上浪显著降低,从而提高船舶在方形波浪中的航行安全性, 为船舶遭遇方形波浪时的安全航行提供建议.


关键词: 方形波浪,  耐波性,  大幅运动,  甲板上浪,  计算流体动力学(CFD) 
Fig.1 S175 hull model
主要参数 数值
总长 LOA/m 4.610
两柱间长 L/m 4.375
型宽 B/m 0.635
吃水 T/m 0.2375
排水量 Δ/kg 370.49
重心距艉柱纵向距离 zg/m 2.125
重心距基线垂向距离 xg/m 0.2125
横向回转半径 kxx/m 0.241
纵向回转半径 kyy/m 1.052
Tab.1 Main properties and parameters of S175 model
波型 α λ/L ε H/mm Fn
单向波 0°、?45°、?90° 0.6、0.8、0.9、1.0、
1.1、1.2、1.5、2.0
? 120 0.25
双向波 ?45°/45°、?90°/0°、
?135°/?45°
0.6、0.8、0.9、1.0、
1.1、1.2、1.5、2.0
0 240 0.25
Tab.2 Calculation conditions in unidirectional waves and bidirectional waves
Fig.2 Wave propagation headings relative to ship
Fig.3 Fluid domain and boundary conditions
Fig.4 Mesh generation of fluid domain
Fig.5 Overset mesh and surface mesh around hull
Fig.6 CFD simulated waves and wave gauge position
Fig.7 Initialized wave profile of uni-directional waves
Fig.8 Initialized wave profile of bi-directional waves
Fig.9 Wave elevation of encountered uni-directional waves
Fig.10 Wave elevation of encountered bi-directional waves
Fig.11 Frequency domain results of encountered bi-directional wave   
Fig.12 Ship motion in bi-directional waves
Fig.13 Comparison of longitudinal motion amplitude
Fig.14 Comparison of time series of ship longitudinal motion in symmetrical waves
Fig.15 Comparison of green water on deck
Fig.16 Comparison of time series of ship longitudinal motion in asymmetrical waves
Fig.17 Comparison of green water on deck
Fig.18 Three typical routes at −45°/45° heading angle
Fig.19 Time series of ship motion on different routes
Fig.20 ship motion and green water on deck
[1]   杨帆, 董国祥, 周红鹰, 等 数值模拟在船型方案优选中的应用[J]. 船舶工程, 2018, 40 (11): 27- 32
YANG Fan, DONG Guo-xiang, ZHOU Hong-ying, et al Application of numerical simulation on selection of hull line optimization schemes[J]. Ship Engineering, 2018, 40 (11): 27- 32
[2]   高鉴 基于重叠网格的规则波中船舶运动数值预报方法[J]. 兵器装备工程学报, 2018, 39 (10): 193- 196
GAO Jian A numerical method for motion characteristics of a ship model in regular waves based on overset mesh[J]. Journal of Ordnance Equipment Engineering, 2018, 39 (10): 193- 196
[3]   ROSETTI G F, PINTO M L, DE MELLO P C, et al CFD and experimental assessment of green water events on an FPSO hull section in beam waves[J]. Marine Structure, 2019, (65): 154- 180
[4]   TOFFOLIA A, LEFEVRE J M, GREGERSEN E B, et al Towards the identification of warning criteria: analysis of a ship accident database[J]. Applied Ocean Research, 2005, 27 (6): 281- 291
doi: 10.1016/j.apor.2006.03.003
[5]   MATHIEU R, FLAVIA R, OLAF W, et al. Second-order wave loads on a LNG carrier in multi-directional waves[C]// Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril: American Society of Mechanical Engineers Digital Collection, 2008: 363–370.
[6]   李积德. 船舶耐波性[M]. 哈尔滨: 哈尔滨工程大学出版社, 1994.
[7]   郑文涛, 缪泉明, 周德才, 等 三维波对船舶运动响应影响研究[J]. 船舶力学, 2009, 13 (2): 184- 188
ZHENG Wen-tao, MIAO Quan-ming, ZHOU De-cai, et al Difference between motions in 3D and 2D waves[J]. Journal of Ship Mechanics, 2009, 13 (2): 184- 188
doi: 10.3969/j.issn.1007-7294.2009.02.004
[8]   徐刚, 陈静, 朱仁庆, 等 多方向波与结构的相互作用模拟分析[J]. 哈尔滨工程大学学报, 2019, 40 (3): 462- 467
XU Gang, CHEN Jing, ZHU Ren-qing, et al Numerical simulation of multi-directional wave and structure interaction[J]. Journal of Harbin Engineering University, 2019, 40 (3): 462- 467
[9]   陈京普, 魏锦芳, 朱德祥 船舶在长峰和短峰不规则波中运动的三维时域数值模拟[J]. 水动力学研究与进展A辑, 2011, 26 (5): 589- 596
CHEN Jing-pu, WEI Jin-fang, ZHU De-xiang Numerical simulations of ship motions in long-crested and short-crested irregular waves by a 3D time domain method[J]. Chinese Journal of Hydrodynamics: A, 2011, 26 (5): 589- 596
doi: 10.3969/j.issn1000-4874.2011.05.010
[10]   WANG W, BIHS H, KAMATH A, et al. Multi-directional irregular wave modelling with CFD[C]// The 4th International Conference in Ocean Engineering (ICOE). Chennai: Lecture Notes in Civil Engineering, 2018: 22.
[11]   CAO H J, WAN D C Development of multidirectional nonlinear numerical wave tank by Naoe-FOAM-SJTU solver[J]. International Journal of Ocean System Engineering, 2014, 4 (1): 49- 56
doi: 10.5574/IJOSE.2014.4.1.049
[1] Ya-feng YANG,Yi-ping WANG,Zhi-xin CHEN,Jian-jun SU,Bin YANG. Dispersion characteristics of droplet in bus and risk prediction of infection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 161-167.
[2] Guo-qing HE,Wen-jie ZHAO,Liang WANG. Ventilation and heat transfer modeling in urban utility tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1419-1425.
[3] Huan-long LIU,Chi-xin XIE,Da-fa LI,Jia-wei WANG. Flow field distribution of splash lubrication of gearbox and churning gear torque loss[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 875-886.
[4] Xiong-dong WANG,Zhang-ming PENG,Hua-chen PAN,Xiao-qing TIAN,Ze-fei ZHU,Jian-xing LENG. Prediction of turning radius of autonomous ship with two propellers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1930-1936.
[5] Hao ZHOU,Kun ZHANG,Ya-wei LI,Jia-kai ZHANG. Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1139-1147.
[6] Yong-xiang GAO,Du HONG,You-wei CHENG,Li-jun WANG,Xi LI. Experimental and numerical simulation on sequential three phase jet-loop reactor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 997-1005.
[7] Yan-ning LU,Hong-tao ZHANG,Yan-wei XU,Yan-qun ZHU,Kai-di WAN,Zhe-ru SHAO,Zhi-hua WANG. Numerical simulation of effects of flue gas recirculation on biomass combustion in grate boiler[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1898-1906.
[8] Shi-tang KE,Wen-lin YU,Lu XU,Ling-yun DU,Wei YU,Qing YANG. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1936-1945.
[9] ZHANG Xin, ZHANG Tian-hang, HUANG Zhi-yi, ZHANG Chi, KANG Cheng, WU Ke. Local loss and flow characteristic of dividing flow in bifurcated tunnel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 440-445.
[10] CHEN Wei, QIN Xian-rong, YANG Zhi-gang. Wind load characteristics analysis of mast and jib of tower crane[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2262-2270.
[11] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.
[12] HE Fang xiang, ZHAN Shu lin, QIAN Xiao qian, LAI Jun ying. Numerical simulation on insulation of flat roof ventilation layer[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2397-2402.
[13] YANG Mao,XU Shan-shan. Numerical simulation of aerodynamics of coupled flapping-pitching airfoil with trailing-edge flap[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 149-153.
[14] LUO Yao-zhi, SUN Bin. Wind tunnel test and numerical simulation of wind-induced static pressure field around a building[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1148-1156.
[15] SUN Jing-yuan, LOU Jia-ming, HUANG Zheng-liang,WANG Jing-dai, JIANG Bin-bo. Acoustic emission detection and CFD simulation of a liquid spray process[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 218-225.